搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空芯微结构光纤拉曼探针的实验研究

盛子城 王腾 周桂耀 夏长明 刘建涛 李波瑶 樊海霞 陈云 侯峙云

引用本文:
Citation:

基于空芯微结构光纤拉曼探针的实验研究

盛子城, 王腾, 周桂耀, 夏长明, 刘建涛, 李波瑶, 樊海霞, 陈云, 侯峙云

Raman probe based on hollow-core microstructured fiber

Sheng Zi-Cheng, Wang Teng, Zhou Gui-Yao, Xia Chang-Ming, Liu Jian-Tao, Li Bo-Yao, Fan Hai-Xia, Chen Yun, Hou Zhi-Yun
PDF
导出引用
  • 表面增强拉曼散射(SERS)技术可有效增强样品分子的拉曼信号,对生物分子检测具有较高的灵敏性,因此在生化方面有着许多潜在的应用.而将空芯微结构光纤与SERS技术相结合不仅能够远端实时、分布式地检测,同时还可以增加光场与待测物的有效作用面积,减少传统光纤探针无法避免的石英背景信号等问题.本文基于空芯微结构光纤进行SERS探针的制备及性能测试研究,利用真空物理溅射法在空芯光纤内镀纳米Ag膜,从而制备成SERS探针,通过实验检测不同浓度的罗丹明6G(R6G)酒精溶液的拉曼信号.结果表明,在探针的近端正面成功探测到了浓度低至10-9 mol/L的R6G拉曼信号,在探针的远端反面探测到的浓度可小于10-6 mol/L.该实验结果为研究高灵敏度的SERS探针提供了一种新的手段.
    Surface-enhanced Raman scattering (SERS) technology can effectively enhance the Raman signal of sample molecules. It has a higher sensitivity to detect biomolecule and thus has many potential applications in biochemistry. The combination of hollow-core microstructured fiber and SERS technology not only enables remote real-time and distributed detection, but also can increase the effective action area between the light field and the object to be measured, and further reduce silica glass background signal that is unavoidable in traditional fiber probes. In this paper, the hollow-core microstructure fiber Raman probes with excellent performance are investigated from the aspects of fiber preparation and SERS experi-mental testing. First, we design and manufacture a kind of hollow-core microstructured fiber with multi-bands in the visible and near-infrared wavelength. The fibers show good light guide performance and thus can fully meet the requirements for surface-enhanced Raman excitation and signal transmission. At the same time, the large core size facilitates the coupling of excitation light, and provides enough room for the test object and the light field. Then, this hollow-core microstructured fiber is used in surface-enhanced Raman experiment. A layer of nano-Ag film is modified on the inner surface of the hollow-core microstructure fiber to prepare the SERS probe by the vacuum physical sputtering method, and Rhodamine 6G (R6G) alcohol solutions with different concentrations are prepared by the dilution method. The hollow-core microstructured fiber deposited with the Ag nano-film is immersed in R6G alcohol solution for 2 min. The alcohol solution of R6G is sucked into the air hole of the hollow-core microstructured fiber by the capillary effect. Then this fiber with R6G alcohol solution is placed in a drying oven at 40 ℃ for 3 h until the alcohol solvent in the air hole is completely volatilized. After that, this fiber is taken out and tested under a detection environment full with air. The fiber SERS probes are tested by microscopic confocal Raman spectroscopy, then the Raman spectra of R6G alcohol solvents with different concentrations are obtained. An R6G Raman signal with a concentration as low as 10-9 mol/L is successfully detected on the front side of the probe. In the far-end back-side detection mode, the detected concentration of SERS probe can be less than 10-6 mol/L. The designed hollow-core microstructured fiber probe has a simple structure and is easy to prepare and test. Compared with the traditional optical fiber, it has advantages of large effective area for the test object and the light field, small interference from the silica glass background signal. This hollow-core microstructured fiber probe has wide application prospects in biochemical detection and other fields.
      通信作者: 侯峙云, houzhiyun@163.com
    • 基金项目: 国家自然科学基金(批准号:61575066)、国家自然科学基金重点项目(批准号:61735005)、国家自然科学基金仪器专项基金(批准号:61527822)、广东省科技计划(批准号:2017KZ010101)和广东省高等学校珠江学者岗位计划资助项目(2017)资助的课题.
      Corresponding author: Hou Zhi-Yun, houzhiyun@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575066), the Key Program of the National Natural Science Foundation of China (Grant No. 61735005), the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61527822), the Science and Technology Program of Guangzhou, China (Grant No. 2017KZ010101), and the Project supported by GDUPS (2017).
    [1]

    Nie S, Emory S R 1997 Science 275 1102

    [2]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 物理学报 58 1980]

    [3]

    Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Xiong S Z, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese) [黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖 2010 物理学报 59 2753]

    [4]

    Yang X, Tanaka Z, Newhouse R, Xu Q, Chen B, Chen S 2010 Rev. Sci. Instrum. 81 123103

    [5]

    Andrade G F S, Fan M, Brolo A G 2010 Biosens. Bioelectron. 25 2270

    [6]

    Liu S, Rong M, Zhang H, Chen N, Pang F, Chen Z 2016 Biomed. Opt. Express 7 810

    [7]

    Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394

    [8]

    Balu M, Liu G, Chen Z, Tromberg B J, Potma E O 2010 Opt. Express 18 2380

    [9]

    Zhang Y, Gu C, Schwartzberg A M, Zhang J Z 2005 Appl. Phys. Lett. 87 123105

    [10]

    Yin Z, Geng Y, Xie Q, Hong X, Tan X, Chen Y 2016 Appl. Opt. 55 5408

    [11]

    Guo X D, Tang J, Liu W Y, Guo H, Fang G C, Zhao M M, Wang L, Xia M J, Liu J 2017 Acta Phys. Sin. 66 044208 (in Chinese) [郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊 2017 物理学报 66 044208]

    [12]

    Fan Q F, Cao J, Liu Y, Yao B, Mao Q H 2013 Appl. Opt. 52 6163

    [13]

    Yang X, Shi C, Newhouse R, Zhang J Z, Gu C 2011 Int. J. Opt. 2011 754610

    [14]

    Yan D, Popp J, Pletz M W, Frosch T 2018 Anal. Methods 10 586

    [15]

    Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J 2007 Biomed. Opt. 6433 643307

    [16]

    Khetani A, Momenpour A, Alarcon E I, Anis H 2015 Biomed. Opt. Express 6 4599

    [17]

    Dinish U S, Fu C Y, Soh K S, Ramaswamy B, Kumar A, Olivo M 2012 Biosens. Bioelectron. 33 293

    [18]

    Ghenuche P, Rammler S, Joly N Y, Scharrer M, Frosz M, Wenger J 2012 Opt. Lett. 37 4371

    [19]

    Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J 2006 Appl. Phys. Lett. 89 204101

    [20]

    Zhang Y, Shi C, Gu C, Seballos L, Zhang J Z 2007 Appl. Phys. Lett. 90 193504

    [21]

    Debord B, Amsanpally A, Chafer M, Baz A, Maurel M, Blondy J M 2017 Optica 4 209

    [22]

    Zhang N, Humbert G, Gong T, Shum P P, Li K, Auguste J L 2016 Sens. Actu. B 223 195

    [23]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R 2016 Nat. Rev. Mater. 1 16021

    [24]

    Hildebrandt P, Stockburger M 1984 J. Phys. Chem. 88 5935

  • [1]

    Nie S, Emory S R 1997 Science 275 1102

    [2]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 物理学报 58 1980]

    [3]

    Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Xiong S Z, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese) [黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖 2010 物理学报 59 2753]

    [4]

    Yang X, Tanaka Z, Newhouse R, Xu Q, Chen B, Chen S 2010 Rev. Sci. Instrum. 81 123103

    [5]

    Andrade G F S, Fan M, Brolo A G 2010 Biosens. Bioelectron. 25 2270

    [6]

    Liu S, Rong M, Zhang H, Chen N, Pang F, Chen Z 2016 Biomed. Opt. Express 7 810

    [7]

    Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394

    [8]

    Balu M, Liu G, Chen Z, Tromberg B J, Potma E O 2010 Opt. Express 18 2380

    [9]

    Zhang Y, Gu C, Schwartzberg A M, Zhang J Z 2005 Appl. Phys. Lett. 87 123105

    [10]

    Yin Z, Geng Y, Xie Q, Hong X, Tan X, Chen Y 2016 Appl. Opt. 55 5408

    [11]

    Guo X D, Tang J, Liu W Y, Guo H, Fang G C, Zhao M M, Wang L, Xia M J, Liu J 2017 Acta Phys. Sin. 66 044208 (in Chinese) [郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊 2017 物理学报 66 044208]

    [12]

    Fan Q F, Cao J, Liu Y, Yao B, Mao Q H 2013 Appl. Opt. 52 6163

    [13]

    Yang X, Shi C, Newhouse R, Zhang J Z, Gu C 2011 Int. J. Opt. 2011 754610

    [14]

    Yan D, Popp J, Pletz M W, Frosch T 2018 Anal. Methods 10 586

    [15]

    Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J 2007 Biomed. Opt. 6433 643307

    [16]

    Khetani A, Momenpour A, Alarcon E I, Anis H 2015 Biomed. Opt. Express 6 4599

    [17]

    Dinish U S, Fu C Y, Soh K S, Ramaswamy B, Kumar A, Olivo M 2012 Biosens. Bioelectron. 33 293

    [18]

    Ghenuche P, Rammler S, Joly N Y, Scharrer M, Frosz M, Wenger J 2012 Opt. Lett. 37 4371

    [19]

    Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J 2006 Appl. Phys. Lett. 89 204101

    [20]

    Zhang Y, Shi C, Gu C, Seballos L, Zhang J Z 2007 Appl. Phys. Lett. 90 193504

    [21]

    Debord B, Amsanpally A, Chafer M, Baz A, Maurel M, Blondy J M 2017 Optica 4 209

    [22]

    Zhang N, Humbert G, Gong T, Shum P P, Li K, Auguste J L 2016 Sens. Actu. B 223 195

    [23]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R 2016 Nat. Rev. Mater. 1 16021

    [24]

    Hildebrandt P, Stockburger M 1984 J. Phys. Chem. 88 5935

  • [1] 何孝天, 徐进良, 程怡玮. 光纤探针测量及多尺度熵鉴别超临界类沸腾传热模式. 物理学报, 2023, 72(5): 057801. doi: 10.7498/aps.72.20222060
    [2] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射. 物理学报, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [3] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学. 物理学报, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [4] 熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清. 新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究. 物理学报, 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [5] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [6] 郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊. 锥柱型光纤探针在表面增强拉曼散射方面的应用. 物理学报, 2017, 66(4): 044208. doi: 10.7498/aps.66.044208
    [7] 王鑫, 娄淑琴, 廉正刚. 空芯光子带隙光纤色散特性的实验研究. 物理学报, 2016, 65(19): 194212. doi: 10.7498/aps.65.194212
    [8] 陆乃彦, 余雪健, 万佳伟, 翁雨燕, 郭俊宏, 刘宇. 微图案化金衬底表面等离子体共振光学特性. 物理学报, 2016, 65(20): 208102. doi: 10.7498/aps.65.208102
    [9] 严雪过, 沈毅, 潘聪, 李鹏, 丁志华. 基于拉锥结构的全光纤型内窥OCT探针研究. 物理学报, 2016, 65(2): 024201. doi: 10.7498/aps.65.024201
    [10] 徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫. 具有四模式的低串扰及大群时延多芯微结构光纤的设计. 物理学报, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [11] 刘桂媛, 宋洪胜, 张宁玉, 程传福. 飞秒激光在锥形镀膜探针传输中相位奇异的研究. 物理学报, 2015, 64(2): 024203. doi: 10.7498/aps.64.024203
    [12] 张银, 陈明阳, 周骏, 张永康. 微结构芯大模场平顶光纤及其传输特性分析. 物理学报, 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [13] 程胜飞, 彭景刚, 李进延, 程兰, 蒋作文, 李海清, 戴能利, 姜发刚, 杨晓波. 空芯光子晶体光纤表面模损耗控制的研究. 物理学报, 2012, 61(24): 244207. doi: 10.7498/aps.61.244207
    [14] 饶云江, 李立, 贾新鸿, 冉曾令, 张田虎. 基于拉曼组合放大的长距离光纤传输系统. 物理学报, 2010, 59(7): 4682-4686. doi: 10.7498/aps.59.4682
    [15] 张美艳, 李曙光, 姚艳艳, 张磊, 付博, 尹国冰. 微结构纤芯对光子晶体光纤基本特性的影响. 物理学报, 2010, 59(5): 3278-3285. doi: 10.7498/aps.59.3278
    [16] 刘桂媛, 滕树云, 程传福, 宋洪胜, 刘曼. 锥形镀膜光纤探针中飞秒激光脉冲的传输. 物理学报, 2009, 58(11): 7613-7620. doi: 10.7498/aps.58.7613
    [17] 季玲玲, 陆培祥, 陈 伟, 戴能利, 张继皇, 蒋作文, 李进延, 李 伟. 微结构光纤次芯中的四波混频过程. 物理学报, 2008, 57(9): 5973-5977. doi: 10.7498/aps.57.5973
    [18] 徐 凯, 潘 石, 吴世法, 孙 伟, 李银丽. 热拉伸和化学腐蚀相结合制备弯曲光纤探针. 物理学报, 2003, 52(5): 1190-1195. doi: 10.7498/aps.52.1190
    [19] 张立源, 李永贵, 王潜. 扫描近场红外显微镜光纤探针的腐蚀制法. 物理学报, 2001, 50(12): 2322-2326. doi: 10.7498/aps.50.2322
    [20] 周庆, 朱星, 李宏福. 近场光学中光纤探针的光强分布. 物理学报, 2000, 49(2): 210-214. doi: 10.7498/aps.49.210
计量
  • 文章访问数:  7090
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-13
  • 修回日期:  2018-06-11
  • 刊出日期:  2019-09-20

/

返回文章
返回