搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉末颗粒气力加注特性实验研究

杨建刚 胡春波 朱小飞 李悦 胡旭 邓哲

引用本文:
Citation:

粉末颗粒气力加注特性实验研究

杨建刚, 胡春波, 朱小飞, 李悦, 胡旭, 邓哲

Experiment study of characteristics of powder pneumatic filling

Yang Jian-Gang, Hu Chun-Bo, Zhu Xiao-Fei, Li Yue, Hu Xu, Deng Zhe
PDF
HTML
导出引用
  • 粉末发动机是以粉末颗粒为燃料的新型发动机, 具有多次起动和推力调节的功能. 粉末加注是粉末发动机实验组织过程中的重要环节. 本研究通过搭建粉末供应系统开展粉末气力加注实验, 研究对比了集粉箱加注位置、流化气量对粉末气力加注特性的影响. 考虑了供粉过程中储箱内粉末堆积密度的动态变化, 并建立了相应的计算方法, 同时还采用控制系统理论揭示了储箱内粉末堆积密度的变化规律. 结果表明: 在相同条件下, 较大的流化气量有利于加注过程稳定, 但集粉箱加注率较低; 气力加注方式下集粉箱内的粉末堆积密度大于储箱内初始堆积密度; 采用较小的流化气量与集粉箱壁面切向加注方式有利于提高粉末粒径分布均匀性; 集粉箱壁面切向加注方式下, 流化气量较小时储箱内粉末的堆积密度是先增大后减小, 且堆积密度最终值小于初始值, 而流化气量较大时, 储箱内粉末的堆积密度是先增大后减小再增大后减小, 且堆积密度最终值大于初始值; 储箱内粉末堆积密度的动态变化过程类似于欠阻尼二阶系统, 流化气量较小时系统阻尼系数较小, 而流化气量较大时系统阻尼系数较大, 且是一个变阻尼过程.
    Powder engine is one kind of new concept engines with multiple ignition capability and thrust modulation function. Powder filling is an important process of the powder engine tests. The powder pneumatic filling experiments were carried out to investigate the effects of the filling position of the powder collection box and the mass flow rate of fluidization gas on the stability and performance of powder pneumatic filling. It’s found that large mass flow rate of fluidization gas contributes to stability of powder pneumatic filling, but its volume efficiency of powder filling is the lowest, only 68.1%, but it’s 93.9% when the mass flow rate of fluidization gas is small. Compared with the vertical inlet of end cap, tangential inlet on the cylinder wall makes the powder uniformity better. In the pneumatic filling mode, the powder bulk density in the collection box is greater than the bulk density in the powder tank. In addition, the mass of powder calculated by position displacement is always larger than the mass of powder measured by the electronic balance. It indicates powder bulk density in tank is constantly changing during the powder pneumatic filling experiments. The actual powder bulk density in the powder tank is calculated by a model established in this paper, it’s found that when the mass flow rate of fluidization gas is low, the bulk density of the powder in the tank is increased first and then decreased, and the final bulk density is less than the initial value. While the mass flow rate of fluidization gas is high, powder bulk density in the tank is first increased, then decreased, then increased and then decreased, and the final bulk density is greater than the initial value. The compression mechanism of powder bulk density in the tank is similar to the motion law of the damper spring vibrator when it is forced to vibrate. It can be described by the damped second-order system response function. When the mass flow rate of fluidization gas is small, the damping coefficient of the system is smaller. While the mass flow rate of fluidization gas is large, the damping coefficient is larger and is variable.
      通信作者: 胡春波, huchunbo@nwpu.edu.cn
    • 基金项目: 国家级-高温熔融液滴碰撞过程及模型研究(51576166)
      Corresponding author: Hu Chun-Bo, huchunbo@nwpu.edu.cn
    [1]

    李悦, 胡春波, 胡加明, 朱小飞, 张力锋, 李超 2018 推进技术, 39 1681

    Li Y, Hu C B, HU J M, Zhu X F, Zhang L F, Li C 2018 J. Propul. Technol. 39 1681

    [2]

    胡旭, 徐义华, 王洪远, 曾卓雄 2014 兵器装备工程学报 35 133Google Scholar

    Hu X, Xu Y H, Wang H Y, Zeng Z X 2014 J. Ordnance Equip. Eng. 35 133Google Scholar

    [3]

    Li Y, Hu C B, Deng Z, Li C, Sun H J, Cai Y P 2017 Acta Astronaut. 133 455Google Scholar

    [4]

    Li C, Hu C B, Xin X, Li Y, Sun H J 2016 Acta Astronaut. 129 74Google Scholar

    [5]

    杨建刚, 胡春波, 邓哲, 朱小飞 2017 火炸药学报 40 36

    Yang J G, Hu C B, Deng Z, Zhu X F 2017 Chin. J. Explos. Propell. 40 36

    [6]

    王磊, 厉彦忠, 马原, 谢福寿 2016 航空动力学报 31 2002

    Wang L, Li Y Z, Ma Y, Xie F S 2016 J. Aerosp. Power 31 2002

    [7]

    李诗久, 周晓君 1992 气力输送理论与应用 (北京:机械工业出版社) 第111−119页

    Li S J, Zhou X J 1992 Pneumatic Conveying Theory and Application (Beijing: Mechanical Industry Press) pp111−119 (in Chinese)

    [8]

    Loftus H, Montanino L, Bryndle R 1972 8th American Institute of Aeronautics and Astronautics Conference New Orleans, America, November 29−December 1, 1972 p1162

    [9]

    Meyer, Mike L 1993 30th Joint Army-Navy-NASA-Air Force Combustion Subcommittee Meeting Monterey, America, November 15−19, 1993 p13

    [10]

    Xia Z X, Shen H J, Hu J X, Liu B 2008 44th American Institute of Aeronautics and Astronautics Conference Hartford, America, July 21−23, 2008 p5131

    [11]

    Goroshin S, Higgins A, Kamel M 2001 37th American Institute of Aeronautics and Astronautics Conference Salt Lake City, America, July 8−11, 2001 p3919

    [12]

    Ramjet, Scramjet and PDE, ONERA http://www.onera. fr/sites/default/files/ressources_documentaires/cours-exposes-conf/ramjet-scramjet-and-pde-an-introduction. pdf)[2019-11-14]

    [13]

    Goroshin S, Higgins A, Lee J 1999 35th American Institute of Aeronautics and Astronautics Conference Los Angeles, America, June 20−24, 1999 p2408

    [14]

    Sun H J, Hu C B, Zhu X F, Yang J G 2017 Exp. Therm. Fluid Sci 83 231Google Scholar

    [15]

    J.W. Burr, H.D. Fricke and M.G. Sobieniak 1974 US Patent 3 812 671

    [16]

    杨晋朝, 夏智勋, 胡建新, 孔龙飞 2013 固体火箭术技术 36 37

    Yang J C, Xia Z X, Hu J X, Kong L F 2013 J. Solid Rocket Technol. 36 37

    [17]

    Sun H J, Hu C B, Zhang T, Deng Z 2016 Appl. Therm. Eng. 102 30Google Scholar

    [18]

    Huang J, Xu S, Yi H, Hu S 2014 Powder Technol. 268 86Google Scholar

    [19]

    郝刚领, 许巧平, 李先雨, 王伟国 2019 物理学报 68 126101Google Scholar

    Hao G L, Xu Q P, Li X Y, Wang W G 2019 Acta Phys. Sin. 68 126101Google Scholar

    [20]

    Misra C, Kim S, Shen S, Sioutas C 2002 J. Aerosol Sci. 33 735Google Scholar

    [21]

    Gu X F, Song J F, Wei Y D 2016 Powder Technol. 299 217Google Scholar

    [22]

    Sibanda V, Greenwood R W, Seville J P K 2001 Powder Technol. 118 193Google Scholar

    [23]

    Gupta R, Gidaspow D, Wasan D T 1993 Powder Technol. 75 79Google Scholar

    [24]

    Amyotte P R, Eckhoff R K 2010 J. Chem. Health Safe. 17 15Google Scholar

    [25]

    Yerazunis S, Cornell S W, Wintner B 1965 Nature 207 835Google Scholar

    [26]

    朱小飞, 胡春波, 杨建刚, 邓哲 2019 西北工业大学学报 37 20

    Zhu X F, Hu C B, Yang J G, Li Y, Liu S N, Deng Z 2019 J. Northwest Polytech. Univ. 37 20

    [27]

    张权义, 彭政, 何润, 刘锐, 陆坤权, 厚美瑛 2007 物理学报 56 4708Google Scholar

    Zhang Q Y, Peng Z, He R, Liu R, Lu K Q, Hou M Y 2007 Acta Phys. Sin. 56 4708Google Scholar

    [28]

    赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢 2018 物理学报 67 104502Google Scholar

    Zhao Z Y, Li Y J, Wang F S, Zhang Q, Hou M Y, Li W H, Ma G 2018 Acta Phys. Sin. 67 104502Google Scholar

    [29]

    李智峰, 彭政, 蒋亦民 2014 物理学报 63 104503Google Scholar

    Li Z F, Peng Z, Jiang Y M 2014 Acta Phys. Sin. 63 104503Google Scholar

    [30]

    杨林, 胡林, 张兴刚 2015 物理学报 64 134502Google Scholar

    Yang L, Hu L, Zhang X G 2015 Acta Phys. Sin. 64 134502Google Scholar

    [31]

    张兴刚, 戴丹 2017 物理学报 66 204501Google Scholar

    Zhang X G, Dai D 2017 Acta Phys. Sin. 66 204501Google Scholar

  • 图 1  单一粉末样品粒度分布

    Fig. 1.  Particle size distribution of single powder sample

    图 2  混合粉粒度分布

    Fig. 2.  Particle size distribution of mixed powder sample

    图 3  粉末气力加注系统

    Fig. 3.  Powder pneumatic filling system.

    图 4  粉末供给系统

    Fig. 4.  Powder feeding system.

    图 5  集粉箱

    Fig. 5.  Powder collection box.

    图 6  不同加注方式对工作参数的影响: (a)工况1#; (b)工况2#; (c) 工况3#

    Fig. 6.  Working parameters of different tests: (a) Test 1#; (b) test 2#; (c) test 3#

    图 7  不同加注方式下的粉末加注质量曲线

    Fig. 7.  Mass curves measured by electronic balance at different filling methods.

    图 8  集粉箱内的粉末压实现象

    Fig. 8.  Compacted powder in collection box.

    图 9  集粉箱内粉末粒度均匀性: (a)工况1#; (b)工况2#; (c)工况3#

    Fig. 9.  Uniformity of powder in collection box: (a) Test 1#; (b) test 2#; (c) test 3#.

    图 10  位移换算与天平测量质量曲线

    Fig. 10.  Mass curves converted by position displacement and measured by electronic balance.

    图 11  储箱内粉末堆积密度变化曲线: (a) 工况1#; (b) 工况 2#

    Fig. 11.  Powder bulk density in tank of test 1# and test 2#: (a) Test 1#; (b) test 2#.

    表 1  实验工况

    Table 1.  Experiment conditions.

    工况加注位置流化气量/(g·s–1)
    1#壁面切向3.2
    2#壁面切向6.4
    3#垂直端盖3.2
    下载: 导出CSV

    表 2  部分加注性能参数

    Table 2.  Some performance parameters of powder filling

    工况$t{\rm{/s}}$$m{\rm{/g}}$${\bar {\dot m}}/({\rm{g}} \cdot {{\rm{s}}^{ - 1}}{\rm{)}}$$H{\rm{/mm}}$${\rho _{\rm{c}}}{\rm{/(g}} \cdot {\rm{c}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{)}}$$\eta $
    1#70131618.8240.51.10193.9%
    2#77100213174.31.14268.1%
    3#28613814.83244.51.12795.5%
    下载: 导出CSV

    表 3  工况1#和工况2#下二阶系统参数

    Table 3.  Second-order system parameters of test 1# and test 2#.

    系统参数${\rho _{\min }}$$K$$\zeta $${\omega _{\rm{n}}}$$\tau $备注
    工况1#87416500.095–18.0
    工况2#1031830.10.090–6.5$t$ ≤ 38 s
    10311070.380.10014.0$t$ > 38 s
    下载: 导出CSV
  • [1]

    李悦, 胡春波, 胡加明, 朱小飞, 张力锋, 李超 2018 推进技术, 39 1681

    Li Y, Hu C B, HU J M, Zhu X F, Zhang L F, Li C 2018 J. Propul. Technol. 39 1681

    [2]

    胡旭, 徐义华, 王洪远, 曾卓雄 2014 兵器装备工程学报 35 133Google Scholar

    Hu X, Xu Y H, Wang H Y, Zeng Z X 2014 J. Ordnance Equip. Eng. 35 133Google Scholar

    [3]

    Li Y, Hu C B, Deng Z, Li C, Sun H J, Cai Y P 2017 Acta Astronaut. 133 455Google Scholar

    [4]

    Li C, Hu C B, Xin X, Li Y, Sun H J 2016 Acta Astronaut. 129 74Google Scholar

    [5]

    杨建刚, 胡春波, 邓哲, 朱小飞 2017 火炸药学报 40 36

    Yang J G, Hu C B, Deng Z, Zhu X F 2017 Chin. J. Explos. Propell. 40 36

    [6]

    王磊, 厉彦忠, 马原, 谢福寿 2016 航空动力学报 31 2002

    Wang L, Li Y Z, Ma Y, Xie F S 2016 J. Aerosp. Power 31 2002

    [7]

    李诗久, 周晓君 1992 气力输送理论与应用 (北京:机械工业出版社) 第111−119页

    Li S J, Zhou X J 1992 Pneumatic Conveying Theory and Application (Beijing: Mechanical Industry Press) pp111−119 (in Chinese)

    [8]

    Loftus H, Montanino L, Bryndle R 1972 8th American Institute of Aeronautics and Astronautics Conference New Orleans, America, November 29−December 1, 1972 p1162

    [9]

    Meyer, Mike L 1993 30th Joint Army-Navy-NASA-Air Force Combustion Subcommittee Meeting Monterey, America, November 15−19, 1993 p13

    [10]

    Xia Z X, Shen H J, Hu J X, Liu B 2008 44th American Institute of Aeronautics and Astronautics Conference Hartford, America, July 21−23, 2008 p5131

    [11]

    Goroshin S, Higgins A, Kamel M 2001 37th American Institute of Aeronautics and Astronautics Conference Salt Lake City, America, July 8−11, 2001 p3919

    [12]

    Ramjet, Scramjet and PDE, ONERA http://www.onera. fr/sites/default/files/ressources_documentaires/cours-exposes-conf/ramjet-scramjet-and-pde-an-introduction. pdf)[2019-11-14]

    [13]

    Goroshin S, Higgins A, Lee J 1999 35th American Institute of Aeronautics and Astronautics Conference Los Angeles, America, June 20−24, 1999 p2408

    [14]

    Sun H J, Hu C B, Zhu X F, Yang J G 2017 Exp. Therm. Fluid Sci 83 231Google Scholar

    [15]

    J.W. Burr, H.D. Fricke and M.G. Sobieniak 1974 US Patent 3 812 671

    [16]

    杨晋朝, 夏智勋, 胡建新, 孔龙飞 2013 固体火箭术技术 36 37

    Yang J C, Xia Z X, Hu J X, Kong L F 2013 J. Solid Rocket Technol. 36 37

    [17]

    Sun H J, Hu C B, Zhang T, Deng Z 2016 Appl. Therm. Eng. 102 30Google Scholar

    [18]

    Huang J, Xu S, Yi H, Hu S 2014 Powder Technol. 268 86Google Scholar

    [19]

    郝刚领, 许巧平, 李先雨, 王伟国 2019 物理学报 68 126101Google Scholar

    Hao G L, Xu Q P, Li X Y, Wang W G 2019 Acta Phys. Sin. 68 126101Google Scholar

    [20]

    Misra C, Kim S, Shen S, Sioutas C 2002 J. Aerosol Sci. 33 735Google Scholar

    [21]

    Gu X F, Song J F, Wei Y D 2016 Powder Technol. 299 217Google Scholar

    [22]

    Sibanda V, Greenwood R W, Seville J P K 2001 Powder Technol. 118 193Google Scholar

    [23]

    Gupta R, Gidaspow D, Wasan D T 1993 Powder Technol. 75 79Google Scholar

    [24]

    Amyotte P R, Eckhoff R K 2010 J. Chem. Health Safe. 17 15Google Scholar

    [25]

    Yerazunis S, Cornell S W, Wintner B 1965 Nature 207 835Google Scholar

    [26]

    朱小飞, 胡春波, 杨建刚, 邓哲 2019 西北工业大学学报 37 20

    Zhu X F, Hu C B, Yang J G, Li Y, Liu S N, Deng Z 2019 J. Northwest Polytech. Univ. 37 20

    [27]

    张权义, 彭政, 何润, 刘锐, 陆坤权, 厚美瑛 2007 物理学报 56 4708Google Scholar

    Zhang Q Y, Peng Z, He R, Liu R, Lu K Q, Hou M Y 2007 Acta Phys. Sin. 56 4708Google Scholar

    [28]

    赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢 2018 物理学报 67 104502Google Scholar

    Zhao Z Y, Li Y J, Wang F S, Zhang Q, Hou M Y, Li W H, Ma G 2018 Acta Phys. Sin. 67 104502Google Scholar

    [29]

    李智峰, 彭政, 蒋亦民 2014 物理学报 63 104503Google Scholar

    Li Z F, Peng Z, Jiang Y M 2014 Acta Phys. Sin. 63 104503Google Scholar

    [30]

    杨林, 胡林, 张兴刚 2015 物理学报 64 134502Google Scholar

    Yang L, Hu L, Zhang X G 2015 Acta Phys. Sin. 64 134502Google Scholar

    [31]

    张兴刚, 戴丹 2017 物理学报 66 204501Google Scholar

    Zhang X G, Dai D 2017 Acta Phys. Sin. 66 204501Google Scholar

  • [1] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析. 物理学报, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [2] 马正木, 靳艳飞. 二值噪声激励下欠阻尼周期势系统的随机共振. 物理学报, 2015, 64(24): 240502. doi: 10.7498/aps.64.240502
    [3] 杨晨光, 阚瑞峰, 许振宇, 张光乐, 刘建国. Voigt线形函数二阶导数研究. 物理学报, 2014, 63(22): 223301. doi: 10.7498/aps.63.223301
    [4] 楼智美. 含非线性微扰项的二阶动力学系统的一阶近似守恒量的一种新求法. 物理学报, 2014, 63(6): 060202. doi: 10.7498/aps.63.060202
    [5] 叶荣, 张彬, 李恪宇. 利用群速度匹配的级联二阶非线性实现超短激光脉冲压缩. 物理学报, 2013, 62(9): 094212. doi: 10.7498/aps.62.094212
    [6] 张勇. 时滞对一类单位负反馈二阶振荡系统的正面作用分析. 物理学报, 2012, 61(23): 230202. doi: 10.7498/aps.61.230202
    [7] 楼智美. 三自由度二阶非线性耦合动力学系统守恒量的扩展Prelle-Singer求法. 物理学报, 2010, 59(6): 3633-3638. doi: 10.7498/aps.59.3633
    [8] 楼智美. 二阶非线性耦合动力学系统守恒量的扩展Prelle-Singer求法与对称性研究. 物理学报, 2010, 59(2): 719-723. doi: 10.7498/aps.59.719
    [9] 胥建卫, 王顺金. 电子的相对论平均场理论与一阶、二阶Rashba效应. 物理学报, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [10] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 粉末材料堆积的物理模型与仿真系统. 物理学报, 2009, 58(13): 21-S28. doi: 10.7498/aps.58.21
    [11] 郭立敏, 徐 伟, 阮春蕾, 赵 燕. 二值噪声驱动下二阶线性系统的随机共振. 物理学报, 2008, 57(12): 7482-7486. doi: 10.7498/aps.57.7482
    [12] 楼智美. 相空间中二阶线性非完整系统的形式不变性. 物理学报, 2004, 53(7): 2046-2049. doi: 10.7498/aps.53.2046
    [13] 董 晖, 吴重庆, 付松年. 旋转光纤对二阶偏振模色散的影响. 物理学报, 2003, 52(8): 1934-1937. doi: 10.7498/aps.52.1934
    [14] 葛伟宽, 张 毅. 二阶可降阶微分约束系统的形式不变性. 物理学报, 2003, 52(9): 2105-2108. doi: 10.7498/aps.52.2105
    [15] 韩福生, 朱震刚, 石纯义, 王 月. 泡沫Al阻尼性能研究. 物理学报, 1998, 47(7): 1161-1170. doi: 10.7498/aps.47.1161
    [16] 谢瑞华. 二能级系统中光场压缩与原子偶极压缩间的对称特性. 物理学报, 1996, 45(9): 1463-1478. doi: 10.7498/aps.45.1463
    [17] 苏景辉, 赵言诚. 动力系Josephson结的距离函数的二阶近似. 物理学报, 1995, 44(7): 1023-1028. doi: 10.7498/aps.44.1023
    [18] 许晶波, 刘宜昌, 高孝纯. 二次型含时间的谐振子系统的压缩态和压缩相干态. 物理学报, 1995, 44(2): 216-224. doi: 10.7498/aps.44.216
    [19] 冯勇, 周廉. 粉末熔化法(YHo)Ba2Cu3O7-y超导体的性能与微结构. 物理学报, 1992, 41(11): 1880-1883. doi: 10.7498/aps.41.1880
    [20] 詹达三. 完全相干场的二阶关联函数的分解性质. 物理学报, 1979, 28(1): 117-120. doi: 10.7498/aps.28.117
计量
  • 文章访问数:  5849
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-22
  • 修回日期:  2019-11-18
  • 刊出日期:  2020-02-20

/

返回文章
返回