x

## 留言板

 引用本文:
 Citation:

## An integrable reverse space-time nonlocal Sasa-Satsuma equation

Song Cai-Qin, Zhu Zuo-Nong
PDF
HTML
• #### 摘要

本文给出了一个可积的逆空时(逆空间-逆时间)非局部Sasa-Satsuma方程. 建立了这个方程的Darboux变换, 并且构造了这个逆空时非局部方程在零背景条件下的孤子解.

#### Abstract

In this paper, we introduce an integrable reverse space-time nonlocal Sasa-Satsuma equation. The Darboux transformation and soliton solutions for this nonlocal integrable equation are constructed.

#### 作者及机构信息

###### 通信作者: 朱佐农, znzhu@sjtu.edu.cn
• 基金项目: 国家自然科学基金(批准号: 11671255, 11801367)资助的课题

#### Authors and contacts

###### Corresponding author: Zhu Zuo-Nong, znzhu@sjtu.edu.cn
• Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11671255, 11801367)

#### 施引文献

• 图 1  可积的逆空时非局部Sasa-Satsuma方程(7)的孤子解　(a) α1 = α2 = β1 = β2 = $\dfrac{\sqrt{2}}{2}, \lambda_1 = {\rm i}, \lambda_2 = -{\rm i}/2$; (b) α1 = –α2 = β1 = –β2 = $\dfrac{\sqrt{2}}{2}, \lambda_1 = 1+{\rm i}, \lambda_2 = 1-{\rm i}$; (c) α1 = β1 = 1, α2 = β2 = 0 $\lambda_2 = {\rm i}, \lambda_1 = \dfrac{1-\sqrt{2}}{1+\sqrt{2}}\lambda_2$

Fig. 1.  Soliton solutions of integrable reverse space-time nonlocal Sasa-Satsuma equation (7): (a) α1 = α2 = β1 = β2 = $\dfrac{\sqrt{2}}{2}, \lambda_1 = {\rm i}, \lambda_2 = -{\rm i}/2$; (b) α1 = –α2 = β1 = –β2 = $\dfrac{\sqrt{2}}{2},$ $\lambda_1 = 1+{\rm i}, \lambda_2 = 1-{\rm i}$; (c) α1 = β1 = 1, α2 = β2 = 0 $\lambda_2 = {\rm i}, \lambda_1 = \dfrac{1-\sqrt{2}}{1+\sqrt{2}}\lambda_2$