搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电动可调焦透镜的大范围快速光片显微成像

胡渝曜 梁东 王晶 刘军

引用本文:
Citation:

基于电动可调焦透镜的大范围快速光片显微成像

胡渝曜, 梁东, 王晶, 刘军

High-speed and large-scaled light-sheet microscopy with electrically tunable lens

Hu Yu-Yao, Liang Dong, Wang Jing, Liu Jun
PDF
HTML
导出引用
  • 搭建了一种基于电动可调焦透镜(electrically tunable lens)的大范围快速光片荧光显微成像系统. 通过引入电动可调焦透镜与一维振镜以实现成像物平面和光片位置的快速移动, 再结合高速sCMOS完成快速光片荧光显微成像. 另外实验中通过改善光路与提升动态成像质量, 实现了大范围扫描并减少了伪像. 最终对成像性能进行测试, 本系统的纵向分辨率和横向分辨率分别达到约5.5 μm和约0.7 μm, 单幅图像稳定成像的速度约为275 frames/s, 成像深度可超过138 μm, 能满足对具有一定尺寸的生物样本进行实时清晰成像的需求.
    Fluorescence microscopic imaging technology realizes specific imaging by labeling biological tissue with fluorescence molecules, which has a high signal-to-noise ratio and has been widely used in the field of medical biology research. Some typical fluorescence microscopy techniques, such as confocal microscopy and two-photon microscopy, have high fluorescence intensity, but the long exposure can cause phototoxicity and photobleaching of biological tissue, which is difficult to meet the demand for long-time observation or noninvasive imaging. Then, light sheet fluorescence microscopy (LSFM) has become a hot research topic in fluorescence micro-imaging in recent years due to its fast speed, high resolution, low photobleaching and low phototoxicity. The imaging speed of a typical light sheet microscopy is not fast enough to observe fast biological activities such as transmission of neural signals, blood flow, and heart beats. At present, many reported light-sheet fluorescence microscopies still have some problems such as fixed imaging surface, slow imaging speed, small imaging depth or residual artifacts. Therefore, in this paper, a rapid light-sheet fluorescence microscopy based on electrically tunable lens is built. To achieve the rapid movement of the focal plane of the detection objective lens, the electrically tunable lens is introduced to meet the reqirement for fast changing of the diopter. Similarly, the rapid movement of light sheet is achieved by introducing one-dimensional galvanometer to change the rotation angle. Fast imaging requires the light sheet and focal plane to overlap in real time, which is then combined with a high-speed sCMOS receiving fluorescence to complete the whole imaging. In the experiment, the vertical depth significantly increases by modifying the optical path, and the LABVIEW programming is used to coordinate and improve the dynamic imaging quality, which effectively reduces the artifacts generated in rapid imaging. Finally, an imaging speed of 275 frames/s with a lateral resolution of ~0.73 μm, vertical resolution of ~5.5 μm, and an imaging depth of ~138 μm is achieved. This is of significance for developing the real-time and non-invasive imaging of living biological tissues.
      通信作者: 刘军, jliu@siom.ac.cn
    • 基金项目: 国家级-国家自然科学基金(61527821)
      Corresponding author: Liu Jun, jliu@siom.ac.cn
    [1]

    Zhang M X, Zhang J, Wang J, Achimovich A M, Aziz A A, Corbitt J, Acton S T, Gahlmann A 2019 Biophys. J. 116 25a

    [2]

    Rocha M D, During D N, Bethge P, Voigt F F, Hildebrand S, Helmchen F, Pfeifer A, Hahnloser R H R, Gahr M 2019 Front. Neuroanat. 13 13Google Scholar

    [3]

    Ahrens M B, Orger M B, Robson D N, Li J M, Keller P J 2013 Nat. Methods 10 413Google Scholar

    [4]

    Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer E H 2004 Science 305 1007Google Scholar

    [5]

    Huisken J, Stainier D Y R 2009 Development 136 1963Google Scholar

    [6]

    Rasmi C K, Madhangi M, Nongthomba U, Mondal P P 2016 Microsc. Res. Techniq. 79 455Google Scholar

    [7]

    Wu Y C, Ghitani A, Christensen R, Santella A, Du Z, Rondeau G, Bao Z R, Colon-Ramos D, Shroff H 2011 Proc. Natl. Acad. Sci. U.S.A. 108 17708Google Scholar

    [8]

    Lemon W C, Pulver S R, Hockendorf B, McDole K, Branson K, Freeman J, Keller P J 2015 Nat. Commun. 6 7924Google Scholar

    [9]

    Kumar S, Wilding D, Sikkel M B, Lyon A R, MacLeod K T, Dunsby C 2011 Opt. Express 19 13839Google Scholar

    [10]

    Wu D, Zhou X, Yao B L, Li R Z, Yang Y L, Peng T, Lei M, Dan D, Ye T 2015 Appl. Opt. 54 8632Google Scholar

    [11]

    Ma P, Chan D C, Gu S, Watanabe M, Jenkins M W, Rollins A M 2016 Biomed. Opt. Express 7 5120Google Scholar

    [12]

    安坤, 王晶, 梁东, 刘军 2017 中国激光 44 274

    An K, Wang J, Liang D, Liu J 2017 Chin. J. Lasers 44 274

    [13]

    Hedde P N, Gratton E 2018 Microsc. Res. Techniq. 81 924Google Scholar

    [14]

    Fei P, Lee J, Packard R R S, Sereti K I, Xu H, Ma J G, Ding Y C, Kang H, Chen H, Sung K, Kulkarni R, Ardehali R, Kuo C C J, Xu X L, Ho C M, Hsiai T K 2016 Sci. Rep. 6 22489Google Scholar

    [15]

    Haslehurst P, Yang Z Y, Dholakia K, Emptage N 2018 Biomed. Opt. Express 9 2154Google Scholar

    [16]

    Kashekodi A B, Meinert T, Michiels R, Rohrbach A 2018 Biomed. Opt. Express 9 4263Google Scholar

    [17]

    Fahrbach F O, Voigt F F, Schmid B, Helmchen F, Huisken J 2013 Opt. Express 21 21010Google Scholar

    [18]

    Landry J R, Itoh R, Li J M, Hamann S S, Mandella M, Contag C H, Solgaard O 2019 J. Biomed. Opt. 24 4

    [19]

    Guan Z, Lee J, Jiang H, Dong S Y, Jen N, Hsiai T, Ho C M, Fei P 2016 Biomed. Opt. Express 7 194Google Scholar

    [20]

    Ritter J G, Veith R, Siebrasse J P, Kubitscheck U 2008 Opt. Express 16 7142Google Scholar

    [21]

    Engelbrecht C J, Stelzer E H 2006 Opt. Lett. 31 1477Google Scholar

    [22]

    张球, 梁东, 白丽华, 刘军 2019 中国激光 46 279

    Zhang Q, Liang D, Bai L H, Liu J 2019 Chin. J. Lasers 46 279

  • 图 1  柱透镜产生光片示意图

    Fig. 1.  Schematic diagram of the cylindrical lens.

    图 2  快速光片显微成像系统光路图

    Fig. 2.  Schematic diagram of rapid light-sheet fluorescence microscopy imaging system.

    图 3  EL-10-30-C对电流阶跃的典型光学响应

    Fig. 3.  Typical optical response of the EL-10-30-Ci to a current step.

    图 4  光束以不同孔径角透过ETL (a) 以小孔径角入射ETL; (b) 以大孔径角入射ETL

    Fig. 4.  The beam passing through the ETL at different aperture angles: (a) The beam passing through the ETL at small aperture angles; (b) the beam passing through the ETL at big aperture angles.

    图 5  光束穿过ETL孔径 (a) ETL孔径阻挡光束; (b) ETL孔径未阻挡光束

    Fig. 5.  The beam passing through the ETL: (a) The beam is blocked by the aperture of ETL; (b) the beam is unblocked by the aperture of ETL.

    图 6  100 nm荧光微球的分析 (a) 100 nm荧光微球的拍摄图像; (b)−(f) 5个光强最大的荧光小球; (g)−(k) 分别是(b)−(f)中荧光小球的灰度剖面线; (l) (g)−(k)的归一化并平均化之后的曲线

    Fig. 6.  Analysis of 100 nm fluorescent spheres: (a) Image of 100 nm fluorescent spheres; (b)−(f) five fluorescent spheres with the largest intensity; (g)−(k) intensity profile of a horizontal line passing through the center of fluorescent sphere in (b)−(f); (l) the normalized and averaged curves of (g)−(k).

    图 7  高斯拟合曲线

    Fig. 7.  Gaussian fitting curve.

    图 8  光片不同横截面的荧光光强分布 (a) 记录光片轮廓的光路; (b) 光片轮廓图; (c) 灰度剖面线平均化后的曲线

    Fig. 8.  Fluorescence intensity distribution at different profile of the light sheet: (a) Optical path for recording light sheet; (b) profile of light sheet; (c) average curves of intensity profile of light sheet.

    图 9  同一个荧光小球在光片不同位置时的图像

    Fig. 9.  Image of the same fluorescent sphere at different positions of the light sheet.

    图 10  在ETL的范围内对200 μm网格成像 (a) IETL = 0 mA时的图像; (b) IETL = 146 mA时的图像; (c) IETL = 292 mA时的图像

    Fig. 10.  Images of a 200 μm grid over the ETL scan range: (a) Image when IETL = 0 mA; (b) image when IETL = 146 mA; (c) image when IETL = 292 mA.

    图 11  本实验结果的伪像分析 (a) 0 ms时经过荧光小球中心的灰度剖面线; (b) 3.7 ms时经过荧光小球中心的灰度剖面线; (c) 7.4 ms时经过荧光小球中心的灰度剖面线

    Fig. 11.  The artifacts analysis of the experimental results: (a) Intensity profile of a line passing through the center of fluorescent sphere captured at 0 ms; (b) intensity profile of a line passing through the center of fluorescent sphere captured at 3.7 ms; (c) intensity profile of a line passing through the center of fluorescent sphere captured at 7.4 ms.

  • [1]

    Zhang M X, Zhang J, Wang J, Achimovich A M, Aziz A A, Corbitt J, Acton S T, Gahlmann A 2019 Biophys. J. 116 25a

    [2]

    Rocha M D, During D N, Bethge P, Voigt F F, Hildebrand S, Helmchen F, Pfeifer A, Hahnloser R H R, Gahr M 2019 Front. Neuroanat. 13 13Google Scholar

    [3]

    Ahrens M B, Orger M B, Robson D N, Li J M, Keller P J 2013 Nat. Methods 10 413Google Scholar

    [4]

    Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer E H 2004 Science 305 1007Google Scholar

    [5]

    Huisken J, Stainier D Y R 2009 Development 136 1963Google Scholar

    [6]

    Rasmi C K, Madhangi M, Nongthomba U, Mondal P P 2016 Microsc. Res. Techniq. 79 455Google Scholar

    [7]

    Wu Y C, Ghitani A, Christensen R, Santella A, Du Z, Rondeau G, Bao Z R, Colon-Ramos D, Shroff H 2011 Proc. Natl. Acad. Sci. U.S.A. 108 17708Google Scholar

    [8]

    Lemon W C, Pulver S R, Hockendorf B, McDole K, Branson K, Freeman J, Keller P J 2015 Nat. Commun. 6 7924Google Scholar

    [9]

    Kumar S, Wilding D, Sikkel M B, Lyon A R, MacLeod K T, Dunsby C 2011 Opt. Express 19 13839Google Scholar

    [10]

    Wu D, Zhou X, Yao B L, Li R Z, Yang Y L, Peng T, Lei M, Dan D, Ye T 2015 Appl. Opt. 54 8632Google Scholar

    [11]

    Ma P, Chan D C, Gu S, Watanabe M, Jenkins M W, Rollins A M 2016 Biomed. Opt. Express 7 5120Google Scholar

    [12]

    安坤, 王晶, 梁东, 刘军 2017 中国激光 44 274

    An K, Wang J, Liang D, Liu J 2017 Chin. J. Lasers 44 274

    [13]

    Hedde P N, Gratton E 2018 Microsc. Res. Techniq. 81 924Google Scholar

    [14]

    Fei P, Lee J, Packard R R S, Sereti K I, Xu H, Ma J G, Ding Y C, Kang H, Chen H, Sung K, Kulkarni R, Ardehali R, Kuo C C J, Xu X L, Ho C M, Hsiai T K 2016 Sci. Rep. 6 22489Google Scholar

    [15]

    Haslehurst P, Yang Z Y, Dholakia K, Emptage N 2018 Biomed. Opt. Express 9 2154Google Scholar

    [16]

    Kashekodi A B, Meinert T, Michiels R, Rohrbach A 2018 Biomed. Opt. Express 9 4263Google Scholar

    [17]

    Fahrbach F O, Voigt F F, Schmid B, Helmchen F, Huisken J 2013 Opt. Express 21 21010Google Scholar

    [18]

    Landry J R, Itoh R, Li J M, Hamann S S, Mandella M, Contag C H, Solgaard O 2019 J. Biomed. Opt. 24 4

    [19]

    Guan Z, Lee J, Jiang H, Dong S Y, Jen N, Hsiai T, Ho C M, Fei P 2016 Biomed. Opt. Express 7 194Google Scholar

    [20]

    Ritter J G, Veith R, Siebrasse J P, Kubitscheck U 2008 Opt. Express 16 7142Google Scholar

    [21]

    Engelbrecht C J, Stelzer E H 2006 Opt. Lett. 31 1477Google Scholar

    [22]

    张球, 梁东, 白丽华, 刘军 2019 中国激光 46 279

    Zhang Q, Liang D, Bai L H, Liu J 2019 Chin. J. Lasers 46 279

  • [1] 潘彬雄, 弓晟, 张鹏, 刘子叶, 皮彭健, 陈旺, 黄文强, 王保举, 詹求强. 基于点扫描的高时空分辨荧光显微成像技术进展. 物理学报, 2023, 72(20): 204201. doi: 10.7498/aps.72.20230912
    [2] 罗晓飞, 王波, 彭宽, 肖嘉莹. 基于聚焦声场模型的光声层析成像时间延迟快速校正反投影方法. 物理学报, 2022, 71(7): 078102. doi: 10.7498/aps.71.20212019
    [3] 胡金虎, 林丹樱, 张炜, 张晨爽, 屈军乐, 于斌. 结合虚拟单像素成像解卷积的双边照明光片荧光显微技术. 物理学报, 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [4] 吴迪, 蒋子珍, 喻欢欢, 张晨爽, 张娇, 林丹樱, 于斌, 屈军乐. 基于分数阶螺旋相位片的定量相位显微成像. 物理学报, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [5] 牛敬敬, 刘雄波, 陈鹏发, 于斌, 严伟, 屈军乐, 林丹樱. 任意数量离散不规则感兴趣区域的快速荧光寿命显微成像. 物理学报, 2021, 70(19): 198701. doi: 10.7498/aps.70.20210941
    [6] 千佳, 党诗沛, 周兴, 但旦, 汪召军, 赵天宇, 梁言生, 姚保利, 雷铭. 基于希尔伯特变换的结构光照明快速三维彩色显微成像方法. 物理学报, 2020, 69(12): 128701. doi: 10.7498/aps.69.20200352
    [7] 王美昌, 于斌, 张炜, 林丹樱, 屈军乐. 基于数字微镜器件的数字线扫描荧光显微成像技术. 物理学报, 2020, 69(23): 238701. doi: 10.7498/aps.69.20200908
    [8] 李明飞, 阎璐, 杨然, 刘院省. 基于Hadamard矩阵优化排序的快速单像素成像. 物理学报, 2019, 68(6): 064202. doi: 10.7498/aps.68.20181886
    [9] 刘雄波, 林丹樱, 吴茜茜, 严伟, 罗腾, 杨志刚, 屈军乐. 荧光寿命显微成像技术及应用的最新研究进展. 物理学报, 2018, 67(17): 178701. doi: 10.7498/aps.67.20180320
    [10] 侯国辉, 罗腾, 陈秉灵, 刘杰, 林子扬, 陈丹妮, 屈军乐. 双光子荧光与相干反斯托克斯拉曼散射显微成像技术的实验研究. 物理学报, 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [11] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法. 物理学报, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [12] 张宇, 唐志列, 吴泳波, 束刚. 基于声透镜的三维光声成像技术. 物理学报, 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [13] 江秀娟, 李菁辉, 朱俭, 林尊琪. 基于简单透镜列阵的可调焦激光均匀辐照光学系统研究. 物理学报, 2015, 64(5): 054201. doi: 10.7498/aps.64.054201
    [14] 王淑莹, 章海军, 张冬仙. 基于微球透镜的任选区高分辨光学显微成像新方法研究. 物理学报, 2013, 62(3): 034207. doi: 10.7498/aps.62.034207
    [15] 王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞. 无透镜傅里叶变换显微数字全息成像系统的焦深. 物理学报, 2012, 61(4): 044208. doi: 10.7498/aps.61.044208
    [16] 闫芬, 张继超, 李爱国, 杨科, 王华, 毛成文, 梁东旭, 闫帅, 李炯, 余笑寒. 基于同步辐射的快速扫描X射线微束荧光成像方法. 物理学报, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [17] 向良忠, 邢达, 郭华, 杨思华. 高分辨率快速数字化光声CT乳腺肿瘤成像. 物理学报, 2009, 58(7): 4610-4617. doi: 10.7498/aps.58.4610
    [18] 林浩铭, 邵永红, 屈军乐, 尹 君, 陈思平, 牛憨笨. 散斑照明宽场荧光层析显微成像技术研究. 物理学报, 2008, 57(12): 7641-7649. doi: 10.7498/aps.57.7641
    [19] 陈湛旭, 唐志列, 万 巍, 何永恒. 基于声透镜成像系统的光声层析成像. 物理学报, 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
    [20] 王琛, 王桂英, 徐至展. 全内反射荧光显微术应用于单分子荧光的纵向成像. 物理学报, 2004, 53(5): 1325-1330. doi: 10.7498/aps.53.1325
计量
  • 文章访问数:  7482
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-17
  • 修回日期:  2020-01-10
  • 刊出日期:  2020-04-20

/

返回文章
返回