搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝移阱中单个铯原子基态磁不敏感态的相干操控

李翔艳 王志辉 李少康 田亚莉 李刚 张鹏飞 张天才

引用本文:
Citation:

蓝移阱中单个铯原子基态磁不敏感态的相干操控

李翔艳, 王志辉, 李少康, 田亚莉, 李刚, 张鹏飞, 张天才

Measurement of magnetically insensitive state coherent time in blue dipole trap

Li Xiang-Yan, Wang Zhi-Hui, Li Shao-Kang, Tian Ya-Li, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai
PDF
HTML
导出引用
  • 单个中性原子的超精细微波跃迁能级的相干性是基于中性原子量子计算、量子信息处理和量子模拟的基础. 我们在实验上利用微波双光子拉曼过程实现了蓝移阱中铯原子基态超精细态$\left| {{\rm{6}}{{\rm{S}}_{1/2}},F = 3,{m_F} = - 1} \right\rangle $$\left| {{\rm{6}}{{\rm{S}}_{1/2}},F = 4,{m_F} = 1} \right\rangle $间的相干操控, 并研究了其相对能级频移随磁场的变化, 获得了“魔术”磁场的大小为1.4(2) Gauss (1 Gauss = 10-4 T). 结果表明, 利用魔术磁场可大幅改善超精细态$\left| {\rm{6}}{{\rm{S}}_{1/2}}\right.$, $F = 3 $, $\left. {m_F} = - 1 \right\rangle $$\left| {{\rm{6}}{{\rm{S}}_{1/2}},F = 4,{m_F} = 1} \right\rangle $之间的相干性, 测量到的相干时间可达1.0(1) s.
    Qubit encoded in single neutral atoms is a basic experimental platform for studying the quantum computation, quantum information processing and quantum simulation. The extension of the coherence time has been an important task in recent years. On the basis of the single cesium neutral atom trapped in blued-detuned dipole trap, we study the coherence time of a qubit, which is encoded in a pair of magnetically insensitive ground states of cesium atom ($\left| {\rm{0}} \right\rangle = \left| {{\rm{6}}{{\rm{S}}_{1/2}},F = 3,{m_F} = - 1} \right\rangle $ and $\left| 1 \right\rangle = \left| {{\rm{6}}{{\rm{S}}_{1/2}},F = 4,{m_F} = + 1} \right\rangle $), in the “magic” magnetic field condition. By adopting a two-photon process, in which a microwave photon and an RF photon are used, we obtain the coherence manipulation of the qubit. The dependence of differential energy shift on magnetic field is experimentally studied, and the “magic” magnetic field is determined. In this magic condition, the first derivative of differential energy shift between $\left| {\rm{0}} \right\rangle = \left| {{\rm{6}}{{\rm{S}}_{1/2}},F = 3,{m_F} = - 1} \right\rangle $ and $\left| 1 \right\rangle = \left| {{\rm{6}}{{\rm{S}}_{1/2}},F = 4,{m_F} = + 1} \right\rangle $ in quantized magnet field is zero, which means that the qubit is immune to the fluctuation of magnetic field and the coherence time can be substantially prolonged. The experimentally obtained magic magnetic field is B = 1.4(2) Gauss, which is in good agreement with the theoretical calculation value B = 1.393 Gauss. Finally, we measure the qubit coherence time by setting the quantized magnetic field to be at magic point B = 1.396 Gauss. The qubit coherence time is measured to be 11(1) ms by Ramsey interferometer, where the main decoherence factor is the inhomogeneous dephasing due to the atomic motion in the dipole trap. This incoherence factor can be dramatically suppressed by a spin-echo process where an additional π-pulse is inserted in between the two π/2 pulses. At the magic magnetic point the qubit coherence time can be extended to 1 s by the spin-echo method.
      通信作者: 李刚, gangli@sxu.edu.cn ; 张天才, tczhang@sxu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11634008,11674203,11574187,11974223, 11974225)
      Corresponding author: Li Gang, gangli@sxu.edu.cn ; Zhang Tian-Cai, tczhang@sxu.edu.cn
    [1]

    Divincenzo D P 2001 Quantum Comput. 1 1

    [2]

    García-Ripoll J J, Zoller P, Cirac J I 2003 Phys. Rev. Lett. 91 157901Google Scholar

    [3]

    Loss D, Divincenzo D P 1998 Phys. Rev. A 57 120Google Scholar

    [4]

    Kennedy T A, Charnock F T, Colton J S, Butler J E, Linares R C, Doering P J 2002 Phys. Status Sollidi 233 416Google Scholar

    [5]

    Porto J V, Rolston S, Laburthe Tolra B, Williams C J, Phillips W D 2003 Philos. Trans. Roy. Soc. Lond. A 361 1417Google Scholar

    [6]

    Saffman M 2019 Natl. Sci. Rev. 6 24Google Scholar

    [7]

    Weiss D S, Saffman M 2017 Phys. Today 70 44

    [8]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [9]

    Barredo D, Lienhard V, de Léséleuc S, Lahaye T, Browaeys A 2018 Nature 561 79Google Scholar

    [10]

    Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M, Lukin M D 2016 Science 354 1024Google Scholar

    [11]

    Barredo D, de Léséleuc S, Lienhard V, Lahaye T, Browaeys A 2016 Science 354 1021Google Scholar

    [12]

    Xia T, Lichtman M, Maller K, Carr A W, Piotrowicz M J, Isenhower L, Saffman M 2015 Phys. Rev. Lett. 114 100503Google Scholar

    [13]

    Wang Y, Kumar A, Wu T Y, Weiss D S 2016 Science 352 1562Google Scholar

    [14]

    Sheng C, He X D, Xu P, Guo R J, Wang K P, Xiong Z Y, Liu M, Wang J, Zhan M S 2018 Phys. Rev. Lett. 121 240501Google Scholar

    [15]

    Levine H, Keesling A, Semeghini G, Omran A, Wang T T, Ebadi S, Bernien H, Greiner M, Vuletić V, Pichler H, Lukin M D 2019 Phys. Rev. Lett. 123 170503Google Scholar

    [16]

    Graham T M, Kwon M, Grinkemeyer B, Marra Z, Jiang X, Lichtman M T, Sun Y, Ebert M, Saffman M 2019 arXiv: 1908.061003 [quant-ph]

    [17]

    Wang Y, Um M, Zhang J H, An S M, Lyu M, Zhang J N, Duan L M, Yum D, Kim K 2017 Nat. Photonics 11 646Google Scholar

    [18]

    Derevianko A, Katori H 2011 Rev. Mod. Phys. 83 331Google Scholar

    [19]

    Flambaum V V, Dzuba V A, Derevianko A 2008 Phys. Rev. Lett. 101 220801Google Scholar

    [20]

    Katori H, Hashiguchi K, Il'Inova E Y, Ovsiannikov V D 2009 Phys. Rev. Lett. 103 153004Google Scholar

    [21]

    Carr A W, Saffman M 2016 Phys. Rev. Lett. 117 150801Google Scholar

    [22]

    Choi J M, Cho D 2007 J. Phys. Conf. Ser. 80 012037Google Scholar

    [23]

    Derevianko A 2010 Phys. Rev. Lett. 105 033002Google Scholar

    [24]

    Li G, Tian Y L, Wu W, Li S K, Li X Y, Liu Y X, Zhang P F, Zhang T C 2019 Phys. Rev. Lett. 123 253602Google Scholar

    [25]

    Kim H, Han H S, Cho D 2013 Phys. Rev. Lett. 111 243004Google Scholar

    [26]

    Yang J H, He X D, Guo R J, Xu P, Wang K P, Sheng C, Liu M, Wang J, Derevianko A, Zhan M S 2016 Phys. Rev. Lett. 117 123201Google Scholar

    [27]

    Tian Y L, Wang Z H, Yang P F, Zhang P F, Li G, Zhang T C 2019 Chin. Phys. B 28 023701Google Scholar

    [28]

    Alkali D Line Data, Steck D A http://steck.us/alkalidata/ [2019-12-13]

    [29]

    王建龙, 李刚, 田亚莉, 张天才 2015 量子光学学报 21 74

    Wang J L, Li G, Tian Y L, Zhang T C 2015 Journal of Quantum Optics 21 74

  • 图 1  铯原子超精细态$\left| {{\rm{6}}{{\rm{S}}_{1/2}}, F = 3, {m_F} = - 1} \right\rangle $$\left|{\rm{6}}{{\rm{S}}_{1/2}}\right.$, F = 4, $\left.{m_F} = 1 \right\rangle $的相对差分频移随磁场变化, 其中蓝色点表示魔术磁场

    Fig. 1.  The relative DES (differential energy shift) between cesium hyperfine states $\left| {{\rm{6}}{{\rm{S}}_{1/2}}, F = 3, {m_F} = - 1} \right\rangle $ and $\left| {{\rm{6}}{{\rm{S}}_{1/2}}, F = 4, {m_F} = 1} \right\rangle $ functional relationship with the magnetic field. The blue star indicates the magic magnetic field.

    图 2  蓝移阱中单个铯原子俘获装置示意图

    Fig. 2.  The experimental setup for the trapping of a single cesium atom in the blue detuned dipole trap.

    图 3  光学抽运实现态初始化$\left| {F = 4, {m_F} = 0} \right\rangle $制备以及量子比特$\left| {{\rm{6}}{{\rm{S}}_{1/2}}, F = 4, {m_F} = {\rm{0}}} \right\rangle $$\left| {{\rm{6}}{{\rm{S}}_{1/2}}, F = 3, {m_F} = - 1} \right\rangle $之间的相干转移 (a)初始化$\left| {F = 4, {m_F} = 0} \right\rangle $原理图; (b)双光子拉曼过程中量子比特$\left| {\rm{0}} \right\rangle = \left| {F = 3, {m_F} = - 1} \right\rangle $的制备以及利用双光子共振过程实现量子比特$\left| {6{{\rm{S}}_{1/2}}, F = 3, {m_F} = - 1} \right\rangle \leftrightarrow \left| {6{{\rm{S}}_{1/2}}, F = 4, {m_F} = + 1} \right\rangle $的相干转移; (c)$\left| {{\rm{6}}{{\rm{S}}_{1/2}}, F = 4, {m_F} = {\rm{0}}} \right\rangle $$\left|{\rm{6}}{{\rm{S}}_{1/2}}\right.$, F = 3, $\left.{m_F} = - 1 \right\rangle $的拉比振荡; (d)$\left| {6{{\rm{S}}_{1/2}}, F = 3, {m_F} = - 1} \right\rangle \leftrightarrow \left| {6{{\rm{S}}_{1/2}}, F = 4, {m_F} = + 1} \right\rangle $的拉比振荡

    Fig. 3.  (a) Energy scheme for initialization of Zeeman state $\left| {F = 4, {m_F} = 0} \right\rangle $ by optical pumping; (b) the preparation of qubit $\left| {\rm{0}} \right\rangle = \left| {F = 3, {m_F} = - 1} \right\rangle $ through two-photon Raman transition. $\varDelta $is the intermediate state detuning from the excited state $6{P_{1/2}}$; (c) two-photon Raman Rabi oscillations on the $\left| {{\rm{6}}{{\rm{S}}_{1/2}}, F = 4, {m_F} = {\rm{0}}} \right\rangle \leftrightarrow \left| {{\rm{6}}{{\rm{S}}_{1/2}}, F = 3, {m_F} = - 1} \right\rangle $ transition. The red solid line is fits to a Rabi sinc function; (d) two-photon Raman Rabi oscillations on the $\left| {6{{\rm{S}}_{1/2}}, F = 3, {m_F} = - 1} \right\rangle \leftrightarrow \left|6{{\rm{S}}_{1/2}}\right.$, F = 4, $\left. {m_F} = + 1 \right\rangle $ transition. The oscillation is a fit according to cosine function. Each point is the statistics over 100 shoots.

    图 4  $\left| {6{{\rm{S}}_{1/2}}, F = 3, {m_F} = - 1} \right\rangle $$\left| {6{{\rm{S}}_{1/2}}, F = 4, {m_F} = + 1} \right\rangle $的能级间隔随磁场变化, 实线为公式拟合. 插图为对应磁场为1.233 Gauss时的拉曼谱, 纵坐标频率相对频移为$\Delta {\upsilon _{{\rm{DLS}}}} = $ –1.957(4) kHz

    Fig. 4.  The relative DES between states $\left|6{{\rm{S}}_{1/2}}\right., F = 3, $ $\left. {m_F} = - 1 \right\rangle $ and $\left| {6{{\rm{S}}_{1/2}}, F = 4, {m_F} = + 1} \right\rangle $, solid line is the functional fitting. Inset is the Raman spectrum measured at B = 1.233 Gauss, the relative offset of spectrum is $\Delta {\upsilon _{{\rm{DLS}}}} =$ –1.957(4) kHz.

    图 5  相干时间测量结果 (a) Ramsey干涉测量量子比特的退相干时间为11(1) ms; (b)干涉图样的振幅随自旋回波时间的变化, 退相干时间延长为1.0(1) s, 利用衰减的e指数对归一化实验数据进行拟合, 插图为自由演化时间为400 ms时对应的自旋回波干涉图样, 幅值为0.41(6)

    Fig. 5.  Experimental results for the coherence time measurements: (a) The Ramsey spectrum. The fitting by $P = \dfrac{{{P_0}}}{2}{{\rm{e}}^{ - \frac{t}{{{T_2}}}}}\cos \left( {2{\text{π}}\varOmega t + \phi } \right)$ gives the coherence time $\left( {{T_2}} \right)$ of 11(1) ms; (b) the decay of the amplitude of spin echo signal. The exponential fitting (solid line) gives a coherence time of $T_2^* = 1.0(1)\;{\rm{s}}$. Insert is the spin echo signal at evolution time of ${\tau _{\rm{p}}} = {\rm{4}}00\;{\rm{ms}}$.

  • [1]

    Divincenzo D P 2001 Quantum Comput. 1 1

    [2]

    García-Ripoll J J, Zoller P, Cirac J I 2003 Phys. Rev. Lett. 91 157901Google Scholar

    [3]

    Loss D, Divincenzo D P 1998 Phys. Rev. A 57 120Google Scholar

    [4]

    Kennedy T A, Charnock F T, Colton J S, Butler J E, Linares R C, Doering P J 2002 Phys. Status Sollidi 233 416Google Scholar

    [5]

    Porto J V, Rolston S, Laburthe Tolra B, Williams C J, Phillips W D 2003 Philos. Trans. Roy. Soc. Lond. A 361 1417Google Scholar

    [6]

    Saffman M 2019 Natl. Sci. Rev. 6 24Google Scholar

    [7]

    Weiss D S, Saffman M 2017 Phys. Today 70 44

    [8]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [9]

    Barredo D, Lienhard V, de Léséleuc S, Lahaye T, Browaeys A 2018 Nature 561 79Google Scholar

    [10]

    Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M, Lukin M D 2016 Science 354 1024Google Scholar

    [11]

    Barredo D, de Léséleuc S, Lienhard V, Lahaye T, Browaeys A 2016 Science 354 1021Google Scholar

    [12]

    Xia T, Lichtman M, Maller K, Carr A W, Piotrowicz M J, Isenhower L, Saffman M 2015 Phys. Rev. Lett. 114 100503Google Scholar

    [13]

    Wang Y, Kumar A, Wu T Y, Weiss D S 2016 Science 352 1562Google Scholar

    [14]

    Sheng C, He X D, Xu P, Guo R J, Wang K P, Xiong Z Y, Liu M, Wang J, Zhan M S 2018 Phys. Rev. Lett. 121 240501Google Scholar

    [15]

    Levine H, Keesling A, Semeghini G, Omran A, Wang T T, Ebadi S, Bernien H, Greiner M, Vuletić V, Pichler H, Lukin M D 2019 Phys. Rev. Lett. 123 170503Google Scholar

    [16]

    Graham T M, Kwon M, Grinkemeyer B, Marra Z, Jiang X, Lichtman M T, Sun Y, Ebert M, Saffman M 2019 arXiv: 1908.061003 [quant-ph]

    [17]

    Wang Y, Um M, Zhang J H, An S M, Lyu M, Zhang J N, Duan L M, Yum D, Kim K 2017 Nat. Photonics 11 646Google Scholar

    [18]

    Derevianko A, Katori H 2011 Rev. Mod. Phys. 83 331Google Scholar

    [19]

    Flambaum V V, Dzuba V A, Derevianko A 2008 Phys. Rev. Lett. 101 220801Google Scholar

    [20]

    Katori H, Hashiguchi K, Il'Inova E Y, Ovsiannikov V D 2009 Phys. Rev. Lett. 103 153004Google Scholar

    [21]

    Carr A W, Saffman M 2016 Phys. Rev. Lett. 117 150801Google Scholar

    [22]

    Choi J M, Cho D 2007 J. Phys. Conf. Ser. 80 012037Google Scholar

    [23]

    Derevianko A 2010 Phys. Rev. Lett. 105 033002Google Scholar

    [24]

    Li G, Tian Y L, Wu W, Li S K, Li X Y, Liu Y X, Zhang P F, Zhang T C 2019 Phys. Rev. Lett. 123 253602Google Scholar

    [25]

    Kim H, Han H S, Cho D 2013 Phys. Rev. Lett. 111 243004Google Scholar

    [26]

    Yang J H, He X D, Guo R J, Xu P, Wang K P, Sheng C, Liu M, Wang J, Derevianko A, Zhan M S 2016 Phys. Rev. Lett. 117 123201Google Scholar

    [27]

    Tian Y L, Wang Z H, Yang P F, Zhang P F, Li G, Zhang T C 2019 Chin. Phys. B 28 023701Google Scholar

    [28]

    Alkali D Line Data, Steck D A http://steck.us/alkalidata/ [2019-12-13]

    [29]

    王建龙, 李刚, 田亚莉, 张天才 2015 量子光学学报 21 74

    Wang J L, Li G, Tian Y L, Zhang T C 2015 Journal of Quantum Optics 21 74

  • [1] 白建东, 刘硕, 刘文元, 颉琦, 王军民. 极化角依赖的铯原子魔术波长光阱理论分析. 物理学报, 2023, 72(6): 063102. doi: 10.7498/aps.72.20222268
    [2] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干. 物理学报, 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [3] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [4] 汪野, 张静宁, 金奇奂. 相干时间超过10 min的单离子量子比特. 物理学报, 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [5] 许鹏, 何晓东, 刘敏, 王谨, 詹明生. 中性原子量子计算研究进展. 物理学报, 2019, 68(3): 030305. doi: 10.7498/aps.68.20182133
    [6] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [7] 任立庆, 祝松, 许冠军, 王兆华, 邓仲勋, 魏迎春, 晋宏营, 李增生, 高静, 刘杰, 张林波, 董瑞芳, 刘涛, 李永放, 张首刚. 振动不敏感球形光学参考腔研究. 物理学报, 2014, 63(9): 090601. doi: 10.7498/aps.63.090601
    [8] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响. 物理学报, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [9] 汪之国, 龙兴武, 王飞, 张斌. 激光陀螺本征模偏振态与磁敏感特性的理论研究. 物理学报, 2013, 62(5): 054205. doi: 10.7498/aps.62.054205
    [10] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [11] 文峰, 武保剑, 李智, 李述标. 基于全光纤萨格纳克干涉仪的温度不敏感磁场测量. 物理学报, 2013, 62(13): 130701. doi: 10.7498/aps.62.130701
    [12] 元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂. 飞行时间质谱探测磁光阱中超冷分子离子的实验研究. 物理学报, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [13] 罗霄鸣, 陈丽清, 宁波, 蒋硕, 钟志萍. 延长Rb原子退相干时间镀膜材料的可行性研究. 物理学报, 2010, 59(4): 2207-2211. doi: 10.7498/aps.59.2207
    [14] 金 硕, 解炳昊. 外磁场中海森伯反铁磁模型的代数结构和压缩态解. 物理学报, 2006, 55(8): 3880-3884. doi: 10.7498/aps.55.3880
    [15] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量. 物理学报, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [16] 许晶波, 刘宜昌, 高孝纯. 二次型含时间的谐振子系统的压缩态和压缩相干态. 物理学报, 1995, 44(2): 216-224. doi: 10.7498/aps.44.216
    [17] 黄湘友, 田旭, 胡城立. Landau规范下均匀磁场中带电粒子圆心相干态计算. 物理学报, 1994, 43(12): 1913-1918. doi: 10.7498/aps.43.1913
    [18] 曹清, 罗治江, 张为俊, 夏宇兴. 动态热不敏感谐振腔分析. 物理学报, 1993, 42(9): 1452-1458. doi: 10.7498/aps.42.1452
    [19] 张光寅. 热不敏感腔的解与特征. 物理学报, 1991, 40(3): 407-413. doi: 10.7498/aps.40.407
    [20] 林仁明. 电磁场与等离子体互作用和广义压缩相干态. 物理学报, 1989, 38(11): 1826-1832. doi: 10.7498/aps.38.1826
计量
  • 文章访问数:  8020
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-31
  • 修回日期:  2020-02-01
  • 刊出日期:  2020-04-20

/

返回文章
返回