搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局部加密纯无网格法非线性Cahn-Hilliard方程的模拟

任金莲 蒋戎戎 陆伟刚 蒋涛

引用本文:
Citation:

基于局部加密纯无网格法非线性Cahn-Hilliard方程的模拟

任金莲, 蒋戎戎, 陆伟刚, 蒋涛

Simulation of nonlinear Cahn-Hilliard equation based on local refinement pure meshless method

Ren Jin-Lian, Jiang Rong-Rong, Lu Wei-Gang, Jiang Tao
PDF
HTML
导出引用
  • 为数值求解描述不同物质间相位分离现象的高阶非线性Cahn-Hilliard (C-H)方程, 发展了一种基于局部加密纯无网格有限点集法(local refinement finite pointset method, LR-FPM). 其构造过程为: 1) 将C-H方程中四阶导数降阶为两个二阶导数, 连续应用基于Taylor展开和加权最小二乘法的FPM离散空间导数; 2) 对区域进行局部加密和采用五次样条核函数以提高数值精度; 3) 局部线性方程组求解中准确施加含高阶导数Neumann边值条件. 随后, 运用LR-FPM求解有解析解的一维/二维 C-H方程, 分析粒子均匀分布/非均匀分布以及局部粒子加密情况的误差和收敛阶, 展示了LR-FPM较网格类算法在非均匀布点情况下的优点. 最后, 采用LR-FPM对无解析解的一维/二维 C-H方程进行了数值预测, 并与有限差分结果相比较. 数值结果表明, LR-FPM方法具有较高的数值精度和收敛阶, 比有限差分法更易数值实现, 能够准确展现不同类型材料间相位分离非线性扩散现象随时间的演化过程.
    The phase separation phenomenon between different matters plays an important role in many science fields. And the high order nonlinear Cahn-Hilliard (C-H) equation is often used to describe the phase separation phenomenon between different matters. However, it is difficult to solve the high-order nonlinear C-H equations by the theorical methods and the grid-based methods. Therefore, in this work the meshless methods are addressed, and a local refinement finite pointset method (LR-FPM) is proposed to numerically investigate the high-order nonlinear C-H equations with different boundary conditions. Its constructive process is as follows. 1) The fourth derivative is decomposed into two second derivatives, and then the spatial derivative is discretized by FPM based on the Taylor series expansion and weighted least square method. 2) The local refinement and quintic spline kernel function are employed to improve the numerical accuracy. 3) The Neumann boundary condition with high-order derivatives is accurately imposed when solving the local linear equation sets. The 1D/2D C-H equations with different boundary conditions are first solved to show the ability of the LR-FPM, and the analytical solutions are available for comparison. Meanwhile, we also investigate the numerical error and convergence order of LR-FPM with uniform/non-uniform particle distribution and local refinement. Finally, 1D/2D C-H equation without analytical solution is predicted by using LR-FPM, and compared with the FDM result. The numerical results show that the implement of the boundary value condition is accurate, the LR-FPM indeed has a higher numerical accuracy and convergence order, is more flexible and applicable than the grid-based FDM, and can accurately predict the time evolution of nonlinear diffusive phase separation phenomenon between different materials time.
      通信作者: 蒋涛, jtrjl_2007@126.com
    • 基金项目: 国家级-国家自然科学基金(11501495; 51779215)
      Corresponding author: Jiang Tao, jtrjl_2007@126.com
    [1]

    Wodo O, Ganapathysubramanian B 2011 J. Comput. Phys. 230 6037Google Scholar

    [2]

    Gómez H, Calo V M, Bazilevs Y, Hughes T J R 2008 Comput. Meth. Appl. Mech. Eng. 197 4333Google Scholar

    [3]

    Kästner M, Metsch P, DeBorst R 2016 J. Comput. Phys. 305 360Google Scholar

    [4]

    Guo J. Wang C, Wise S M, Yue X Y 2016 Commun. Math. Sci 14 489Google Scholar

    [5]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [6]

    Wang W S, Chen L, Zhou J 2016 J. Sci. Comput. 67 724Google Scholar

    [7]

    鲁百年, 张瑞凤 1997 工程数学学报 14 52

    Lu B N, Zhang R F 1997 J. Eng. Math. 14 52

    [8]

    Furihata D 2001 Numer. Math. 87 675Google Scholar

    [9]

    Zhu J Z, Chen L Q, Shen J, Tikare V 1999 Phys. Rev. E 60 3564Google Scholar

    [10]

    Choi Y, Jeong D, Kim J 2017 Appl. Math. Comput. 293 320

    [11]

    Dehghan M, Mohammadi V 2015 Eng. Anal. Boundary Elem. 51 74Google Scholar

    [12]

    He Y N, Liu Y X, Tang T 2007 Appl. Numer. Math. 57 616Google Scholar

    [13]

    Dehghan M, Abbaszadeh M 2017 Eng. Anal. Boundary Elem. 78 49Google Scholar

    [14]

    Ye X D, Cheng X L 2005 Appl. Math. Comput. 171 345

    [15]

    De Mello E V L, Filho O T D 2005 Physica A 347 429Google Scholar

    [16]

    Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar

    [17]

    Chen R Y, Nie L R, Chen C Y 2018 Chaos 28 053115Google Scholar

    [18]

    Chen R Y, Nie L R, Chen C Y, Wang C J 2017 J. Stat.Mech: Theory Exp. 2017 013201Google Scholar

    [19]

    Chen C Y, Chen R Y, Nie L R, Wang C J, Jia Y J 2018 Physica A 491 399Google Scholar

    [20]

    Abbaszadeh M, Khodadadian A, Parvizi M, Dehghan M, Heitzinger C 2019 Eng. Anal. Boundary Elem. 98 253Google Scholar

    [21]

    Zhang Z R, Qiao Z H 2012 Commun. Comput. Phys. 11 1261Google Scholar

    [22]

    Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203Google Scholar

    [23]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Mesh-free Particle Method (Singapore: World Scientific) pp35–83

    [24]

    Yang X F, Liu M B 2017 Commun. Comput. Phys. 22 1015Google Scholar

    [25]

    杨秀峰, 刘谋斌 2017 物理学报 66 164701Google Scholar

    Yang X F, Liu M B 2017 Acta Phys. Sin. 66 164701Google Scholar

    [26]

    Sun P N, Colagrossi A, Marrone S, Zhang A M 2017 Comput. Meth. Appl. Mech. Eng. 315 25Google Scholar

    [27]

    蒋涛, 黄金晶, 陆林广, 任金莲 2019 物理学报 68 090203Google Scholar

    Jiang T, Huang J J, Lu L G, Ren J L 2019 Acta Phys. Sin. 68 090203Google Scholar

    [28]

    Suchde P, Kuhnert J, Tiwari S 2018 Comput. Fluids 165 1Google Scholar

    [29]

    Resédiz-Flores E O, Kuhnert J, Saucedo-Zendejo F R 2018 Eur. J. Appl. Math. 29 450Google Scholar

    [30]

    Resendiz-Flores E O, Garcia-Calvillo I D 2014 Int. J. Heat Mass Transfer 71 720Google Scholar

    [31]

    任金莲, 任恒飞, 陆伟刚, 蒋涛 2019 物理学报 68 140203Google Scholar

    Ren J L, Ren H F, Lu W G, Jiang T 2019 Acta Phys. Sin. 68 140203Google Scholar

  • 图 3  不同粒子分布 (a) 粒子均匀分布; (b) 粒子局部加密分布; (c) 粒子非均匀分布

    Fig. 3.  Different cases of particle distributions: (a) Uniform case; (b) local refinement case; (c) non-uniform case.

    图 1  几个不同时刻下均匀分布、局部加密情况下的数值解和解析解

    Fig. 1.  Comparisons between the present numerical results and analytical solutions with different times under the uniform and local refinement particle distributions.

    图 2  不同粒子数下的收敛速度随时间的变化

    Fig. 2.  The numerical convergence versus time under different particle numbers.

    图 4  均匀分布与局部加密情况下的数值结果

    Fig. 4.  The present numerical results under the uniform and local refinement particle distributions.

    图 5  ${\varepsilon ^{\rm{2}}}{\rm{ = 0}}{\rm{.3}}$时不同时刻FDM结果与LR-FPM结果

    Fig. 5.  The numerical results obtained using FDM and LR-FPM at different times with ${\varepsilon ^{\rm{2}}}{\rm{ = 0}}{\rm{.3}}$.

    图 6  ${\varepsilon ^2} = 0.03,\; {\rm{ }}t = 0.2\;{\rm{ s}}$时刻下均匀分布与局部加密情况下数值结果对比

    Fig. 6.  The present numerical results under uniform and local refinement particle distributions at ${\varepsilon ^2} \!=\! 0.03$, t = 0.2 s.

    图 7  $t = 0.1\;{\rm{ s}}$时刻FPM方法模拟结果

    Fig. 7.  The FPM result at $t = 0.1\;{\rm{ s}}$.

    图 8  $t = 0.{\rm{08 \;s}}$时刻本文方法模拟结果与文献[11]中数值等值线分布 (a) 文献[11]中数值结果; (b)−(d) 本文方法在三种粒子分布情况下数值结果

    Fig. 8.  The contour results obtained using the present method and the numerical results in ref.[11] at $t = 0.{\rm{08 \;s}}$: (a) Numerical results in [11]; (b)−(d) present numerical results

    图 9  $t \!=\! 0.{\rm{08\; s}}$时刻粒子局部加密分布情况下的数值收敛

    Fig. 9.  The numerical convergence obtained using the present method under different particle distributions at $t = 0.{\rm{08\; s}}$.

    表 1  $t = 0.5\;{\rm{ s}}$时不同粒子间距情况下的L2-范数误差${E_2}$和收敛阶

    Table 1.  The L2-norm error ${E_2}$ and convergence rate at $t = 0.5\;{\rm{ s}}$.

    粒子间距误差E2收敛阶
    ${d_0} = {\text{π}}/16$1.9623 × 10–4
    ${d_0} = {\text{π}}/32$4.8081 × 10–52.03
    ${d_0} = {\text{π}}/64$1.0688 × 10–52.16
    下载: 导出CSV

    表 2  不同时刻下粒子均匀分布与局部加密情况下的L2-范数误差${E_2}$对比

    Table 2.  The L2-norm error ${E_2}$ at different times under the uniform and local refinement particle distributions.

    $t$均匀分布局部加密
    0.12.2976 × 10–59.7058 × 10–6
    0.33.4419 × 10–52.5119 × 10–5
    0.54.8081 × 10–54.3028 × 10–5
    下载: 导出CSV

    表 3  初始间距${d_0} = 0.04$情况下五次样条核函数与高斯核函数的L2-范数误差${E_2}$对比

    Table 3.  The L2-norm error with quintic spline kernel and gaussian kernel functions at ${d_0} = 0.04$.

    $t$五次样条核函数高斯核函数
    0.0010.00820.0107
    0.0050.01860.0243
    0.0100.02070.0272
    下载: 导出CSV

    表 4  $t = 0.01\;{\rm{ s}}$时刻下不同粒子间距的L2-范数误差${E_2}$和收敛阶

    Table 4.  The L2-norm error ${E_2}$ and convergence rate at $t = 0.01\;{\rm{ s}}$.

    粒子间距${E_2}$收敛阶
    ${d_0} = 1/20$0.0332
    ${d_0} = 1/40$0.00782.09
    ${d_0} = 1/{\rm{6}}0$0.00322.20
    下载: 导出CSV

    表 5  粒子均匀分布、局部加密分布与非均匀分布情况下的L2-范数误差${E_2}$对比

    Table 5.  The L2-norm error ${E_2}$ at different times under the uniform, local refinement, and non-uniform particle distributions.

    $t$均匀分布局部加密非均匀分布
    0.0010.00820.00490.0089
    0.0050.01860.01240.0150
    0.0100.02070.01840.0233
    下载: 导出CSV

    表 6  t = 0.01 s时不同粒子间距非均匀分布情况下的L2-范数误差${E_2}$和收敛阶

    Table 6.  The L2-norm error ${E_2}$ and convergence rate at t = 0.01 s under non-uniform particle distribution.

    粒子间距${E_2}$收敛阶
    ${d_0} = 1/20$0.0251
    ${d_0} = 1/30$0.01141.95
    ${d_0} = 1/40$0.00632.06
    下载: 导出CSV
  • [1]

    Wodo O, Ganapathysubramanian B 2011 J. Comput. Phys. 230 6037Google Scholar

    [2]

    Gómez H, Calo V M, Bazilevs Y, Hughes T J R 2008 Comput. Meth. Appl. Mech. Eng. 197 4333Google Scholar

    [3]

    Kästner M, Metsch P, DeBorst R 2016 J. Comput. Phys. 305 360Google Scholar

    [4]

    Guo J. Wang C, Wise S M, Yue X Y 2016 Commun. Math. Sci 14 489Google Scholar

    [5]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [6]

    Wang W S, Chen L, Zhou J 2016 J. Sci. Comput. 67 724Google Scholar

    [7]

    鲁百年, 张瑞凤 1997 工程数学学报 14 52

    Lu B N, Zhang R F 1997 J. Eng. Math. 14 52

    [8]

    Furihata D 2001 Numer. Math. 87 675Google Scholar

    [9]

    Zhu J Z, Chen L Q, Shen J, Tikare V 1999 Phys. Rev. E 60 3564Google Scholar

    [10]

    Choi Y, Jeong D, Kim J 2017 Appl. Math. Comput. 293 320

    [11]

    Dehghan M, Mohammadi V 2015 Eng. Anal. Boundary Elem. 51 74Google Scholar

    [12]

    He Y N, Liu Y X, Tang T 2007 Appl. Numer. Math. 57 616Google Scholar

    [13]

    Dehghan M, Abbaszadeh M 2017 Eng. Anal. Boundary Elem. 78 49Google Scholar

    [14]

    Ye X D, Cheng X L 2005 Appl. Math. Comput. 171 345

    [15]

    De Mello E V L, Filho O T D 2005 Physica A 347 429Google Scholar

    [16]

    Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar

    [17]

    Chen R Y, Nie L R, Chen C Y 2018 Chaos 28 053115Google Scholar

    [18]

    Chen R Y, Nie L R, Chen C Y, Wang C J 2017 J. Stat.Mech: Theory Exp. 2017 013201Google Scholar

    [19]

    Chen C Y, Chen R Y, Nie L R, Wang C J, Jia Y J 2018 Physica A 491 399Google Scholar

    [20]

    Abbaszadeh M, Khodadadian A, Parvizi M, Dehghan M, Heitzinger C 2019 Eng. Anal. Boundary Elem. 98 253Google Scholar

    [21]

    Zhang Z R, Qiao Z H 2012 Commun. Comput. Phys. 11 1261Google Scholar

    [22]

    Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203Google Scholar

    [23]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Mesh-free Particle Method (Singapore: World Scientific) pp35–83

    [24]

    Yang X F, Liu M B 2017 Commun. Comput. Phys. 22 1015Google Scholar

    [25]

    杨秀峰, 刘谋斌 2017 物理学报 66 164701Google Scholar

    Yang X F, Liu M B 2017 Acta Phys. Sin. 66 164701Google Scholar

    [26]

    Sun P N, Colagrossi A, Marrone S, Zhang A M 2017 Comput. Meth. Appl. Mech. Eng. 315 25Google Scholar

    [27]

    蒋涛, 黄金晶, 陆林广, 任金莲 2019 物理学报 68 090203Google Scholar

    Jiang T, Huang J J, Lu L G, Ren J L 2019 Acta Phys. Sin. 68 090203Google Scholar

    [28]

    Suchde P, Kuhnert J, Tiwari S 2018 Comput. Fluids 165 1Google Scholar

    [29]

    Resédiz-Flores E O, Kuhnert J, Saucedo-Zendejo F R 2018 Eur. J. Appl. Math. 29 450Google Scholar

    [30]

    Resendiz-Flores E O, Garcia-Calvillo I D 2014 Int. J. Heat Mass Transfer 71 720Google Scholar

    [31]

    任金莲, 任恒飞, 陆伟刚, 蒋涛 2019 物理学报 68 140203Google Scholar

    Ren J L, Ren H F, Lu W G, Jiang T 2019 Acta Phys. Sin. 68 140203Google Scholar

  • [1] 康俊锋, 冯松江, 邹倩, 李艳杰, 丁瑞强, 钟权加. 基于机器学习的非线性局部Lyapunov向量集合预报订正. 物理学报, 2022, 71(8): 080503. doi: 10.7498/aps.71.20212260
    [2] 钟鸣, 田守富, 时怡清. 修正的变分迭代法在四阶Cahn-Hilliard方程和BBM-Burgers方程中的应用. 物理学报, 2021, 70(19): 190202. doi: 10.7498/aps.70.20202147
    [3] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统. 物理学报, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [4] 万晖. 带源项的变系数非线性反应扩散方程的精确解. 物理学报, 2013, 62(9): 090203. doi: 10.7498/aps.62.090203
    [5] 杨秀丽, 戴保东, 栗振锋. 弹性力学的复变量无网格局部 Petrov-Galerkin 法. 物理学报, 2012, 61(5): 050204. doi: 10.7498/aps.61.050204
    [6] 刘金华, 佘堃. 基于双树复小波与波原子的图像扩散滤波. 物理学报, 2011, 60(12): 124203. doi: 10.7498/aps.60.124203
    [7] 郑保敬, 戴保东. 位势问题改进的无网格局部Petrov-Galerkin法. 物理学报, 2010, 59(8): 5182-5189. doi: 10.7498/aps.59.5182
    [8] 赵磊, 隋展, 朱启华, 张颖, 左言磊. 分步傅里叶法求解广义非线性薛定谔方程的改进及精度分析. 物理学报, 2009, 58(7): 4731-4737. doi: 10.7498/aps.58.4731
    [9] 贺 锋, 郭启波, 刘 辽. 用三角函数法获得非线性Boussinesq方程的广义孤子解. 物理学报, 2007, 56(8): 4326-4330. doi: 10.7498/aps.56.4326
    [10] 杨红娟, 石玉仁, 段文山, 吕克璞. 非线性演化方程孤立波的同伦分析法求解. 物理学报, 2007, 56(6): 3064-3069. doi: 10.7498/aps.56.3064
    [11] 石玉仁, 汪映海, 杨红娟, 段文山. 高维非线性演化方程孤立波的同伦分析法求解. 物理学报, 2007, 56(12): 6791-6796. doi: 10.7498/aps.56.6791
    [12] 石玉仁, 许新建, 吴枝喜, 汪映海, 杨红娟, 段文山, 吕克璞. 同伦分析法在求解非线性演化方程中的应用. 物理学报, 2006, 55(4): 1555-1560. doi: 10.7498/aps.55.1555
    [13] 于亚璇, 王 琪, 赵雪芹, 智红燕, 张鸿庆. 求解非线性差分方程孤立波解的直接代数法. 物理学报, 2005, 54(9): 3992-3994. doi: 10.7498/aps.54.3992
    [14] 阮航宇, 李慧军. 用推广的李群约化法求解非线性薛定谔方程. 物理学报, 2005, 54(3): 996-1001. doi: 10.7498/aps.54.996
    [15] 刘成仕. 试探方程法及其在非线性发展方程中的应用. 物理学报, 2005, 54(6): 2505-2509. doi: 10.7498/aps.54.2505
    [16] 刘成仕. 用试探方程法求变系数非线性发展方程的精确解. 物理学报, 2005, 54(10): 4506-4510. doi: 10.7498/aps.54.4506
    [17] 张解放, 徐昌智, 何宝钢. 变量分离法与变系数非线性薛定谔方程的求解探索. 物理学报, 2004, 53(11): 3652-3656. doi: 10.7498/aps.53.3652
    [18] 范恩贵, 张鸿庆. 非线性孤子方程的齐次平衡法. 物理学报, 1998, 47(3): 353-362. doi: 10.7498/aps.47.353
    [19] 范恩贵, 张鸿庆. 非线性波动方程的孤波解. 物理学报, 1997, 46(7): 1254-1258. doi: 10.7498/aps.46.1254
    [20] 唐世敏. 若干非线性波方程的行波解. 物理学报, 1991, 40(11): 1818-1826. doi: 10.7498/aps.40.1818
计量
  • 文章访问数:  7377
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-03
  • 修回日期:  2020-01-20
  • 刊出日期:  2020-04-20

/

返回文章
返回