搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环噪声驱动下非对称双稳系统的驻留时间分布函数研究

吴亚珍 孙中奎

引用本文:
Citation:

循环噪声驱动下非对称双稳系统的驻留时间分布函数研究

吴亚珍, 孙中奎

Residence-times distribution function in asymmetric bistable system driven by noise recycling

Wu Ya-Zhen, Sun Zhong-Kui
PDF
HTML
导出引用
  • 提出了一种循环噪声驱动下非对称双稳系统驻留时间分布函数的理论计算方法. 利用具有分段逃逸速率的两态模型理论, 建立分段逃逸速率方程, 分段地推导出了驻留时间分布函数的解析表达式. 在此基础上, 从理论和数值模拟两方面阐明了在非对称性及循环噪声的影响下驻留时间分布函数呈现出反馈结构. 研究结果表明: 当非对称性、循环噪声的相关强度及循环滞后时间取适当值时均会造成驻留时间分布函数呈现出分段指数衰减现象且在循环滞后时间处出现骤然下降的趋势. 随着非对称性的减小, 驻留时间分布函数指数衰减的速率加快并出现单调指数衰减现象. 分别增大相关强度和循环滞后时间, 驻留时间分布函数在循环滞后时间处骤然下降的间距变小. 此外, 驻留时间分布函数在循环滞后时间处的值会随着噪声强度和相关强度的改变出现极大值, 说明系统发生了随机共振现象.
    Residence-times distribution function (RTDF), as a distribution function of times between two consecutive switches in a bistable system, is extensively used to characterize the phenomenon of stochastic resonance (SR). However, most of the studies focus on the symmetric bistable systems. As a matter of fact, the majority of asymmetric systems encountered in nature are more universal and practical. Additionally, due to the combination of diverse propagations or transduction mechanisms, noise recycling, constituted by the superposition of a master noise with a secondary component delayed by a time shift τ, can be generated while a noise is injected into a system and transmitted across the system. Therefore, an asymmetric system subjected to noise recycling is no longer non-Markovian. As a result, it is essential to take the special correlation of noise recycling into account when studying the transition dynamics of particles, which makes it difficult to obtain the analytical formula of RTDF. To solve the above problem, a theoretical method to calculate the RTDF of an asymmetric bistable system driven by noise recycling is put forward in this paper. By using the two-state model with piecewise escape rate, the piecewise escape rate function can be established, based on which the RTDF is derived theoretically with a piecewise formula. It is emphatically demonstrated theoretically and numerically that the RTDF exhibits a feedback-induced structure due to the asymmetry of system. Meanwhile, the effects of relative strength and recycling lag on the structure of RTDF are investigated theoretically and numerically. The results are shown as follows: when the asymmetry satisfies γ > 0 and taking γ as the appropriate values, the RTDF decays exponentially and exhibits a sharp dip at t = τ. Nevertheless, on the contrary, under the condition for γ < 0, the dip at t = τ of RTDF almost disappears and the rate of decay of RTDF turns to increase. When the relative strength and recycling lag take the appropriate values separately, the RTDF displays piecewise exponential decay and declines sharply at t = τ. It is worth noting that the interval between discontinuities becomes smaller, or even disappears with the relative strength and recycling lag increasing separately. Further, the value of RTDF at t = τ presents a maximum value with the noise intensity and the relative strength varying, which illustrates that the noise recycling procedure can play a crucial role in inducing the phenomenon of SR in the asymmetric bistable system.
      通信作者: 孙中奎, sunzk205@163.com
    • 基金项目: 国家自然科学基金(批准号: 11772254, 11742013, 61703363)资助的课题
      Corresponding author: Sun Zhong-Kui, sunzk205@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11772254, 11742013, 61703363)
    [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453Google Scholar

    [2]

    McNamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854Google Scholar

    [3]

    Tognoni E, Cristoforetti G 2016 Opt. Laser Technol. 79 164Google Scholar

    [4]

    Xu P F, Jin Y F 2018 Physica A 492 1281Google Scholar

    [5]

    Zhang Y X, Jin Y F, Xu P F 2019 Chaos 29 023127Google Scholar

    [6]

    Xu P F, Jin Y F, Zhang Y X 2019 Appl. Math. Comput. 346 352Google Scholar

    [7]

    Tsimring L, Pikovsky A 2001 Phys. Rev. Lett. 87 250602Google Scholar

    [8]

    Yang J H, Sanjuán M A F, Liu H G, Litak G, Li X 2016 Commun. Nonlinear Sci. Numer. Simul. 41 104Google Scholar

    [9]

    Nicolis C, Nicolis G 2017 Phys. Rev. E 95 032219Google Scholar

    [10]

    Gammaitoni L, Marchesoni F, Menichella-Saetta E, Santucci S 1989 Phys. Rev. Lett. 62 349Google Scholar

    [11]

    Werner T M, Kadlec R H 2000 Ecol. Eng. 15 77Google Scholar

    [12]

    Masoller C 2003 Phys. Rev. Lett. 90 020601Google Scholar

    [13]

    Curtin D, Hegarty S, Goulding D, Houlihan J, Busch T, Masoller C, Huyet G 2004 Phys. Rev. E 70 031103Google Scholar

    [14]

    Schnellmann M A, Donat F, Scott S A, et al. 2018 Appl. Energy 216 358Google Scholar

    [15]

    Serres M, Schweich D, Vidal V, et al. 2018 Chem. Eng. Sci. 190 149Google Scholar

    [16]

    Escotet-Espinoza M S, Moghtadernejad S, Oka S, et al. 2019 Powder Technol. 342 744Google Scholar

    [17]

    Borromeo M, Giusepponi S, Marchesoni F 2006 Phys. Rev. E 74 031121Google Scholar

    [18]

    Goulding D, Melnik S, Curtin D, Piwonski T, Houlihan J, Gleeson J, Huyet G 2007 Phys. Rev. E 76 031128Google Scholar

    [19]

    Borromeo M, Marchesoni F 2007 Phys. Rev. E 75 041106Google Scholar

    [20]

    Ma J, Hou Z X, Xin H W 2009 Eur. Phys. J. B 69 101Google Scholar

    [21]

    Ma J, Gao Q Y 2011 Sci. China Chem. 54 1504Google Scholar

    [22]

    Jia Z L, Mei D C 2012 Eur. Phys. J. B 85 139Google Scholar

    [23]

    Sun Z K, Yang X L, Xu W 2012 Phys. Rev. E 85 061125Google Scholar

    [24]

    Sun Z K, Wu Y Z, Du L, Xu W 2016 Nonlinear Dyn. 84 1011Google Scholar

    [25]

    Sun Z K, Yang X L, Xiao Y Z, Xu W 2014 Chaos 24 023126Google Scholar

    [26]

    Zeng C H, Wang H, Qing S, Hu J H, Li K Z 2012 Eur. Phys. J. B 85 347Google Scholar

    [27]

    Chamgoué A C, Yamapi R, Woafo P 2012 Eur. Phys. J. Plus 127 59Google Scholar

    [28]

    Chamgoué A C, Yamapi R, Woafo P 2013 Nonlinear Dyn. 73 2157Google Scholar

    [29]

    Jia Z L, Li K Y, Li C, Yang C Y, Mei D C 2015 Eur. Phys. J. B 88 59Google Scholar

  • 图 1  驻留时间分布函数随非对称性$\gamma $的变化(实线是从(25)式中得到的理论结果, 圈线表示数值模拟结果, 且$D = 0.1,\; \varepsilon = 0.5,\; \tau = 100$) (a) $\gamma = 0.07$; (b) $\gamma = 0$; (c) γ = –0.07

    Fig. 1.  Variation of residence-times distribution function (RTDF) with the asymmetry (the solid line denotes the theoretical results obtained from Eq. (25), and the circle line represents the numerical simulation results), where $D = 0.1, \varepsilon = 0.5, \tau = 100$: (a) $\gamma = 0.07$; (b) $\gamma = 0$; (c) γ = –0.07

    图 2  $\gamma = \pm 0.07$势阱图 (a) $\gamma = 0.07$; (b) $\gamma = - 0.07$

    Fig. 2.  Potential well of $\gamma = \pm 0.07$: (a) $\gamma = 0.07$; (b) γ = –0.07

    图 3  ${\rho _ + }\left( \tau \right)$分别作为噪声强度D、循环滞后时间$\tau $和相关强度$\varepsilon $的函数随非对称性$\gamma $的变化($\gamma = 0.1,\; \gamma = 0.04,\; \gamma = - 0.02$) (a) ε = 0.2, τ = 50; (b) D = 0.1, ε = 0.2; (c) D = 0.1, τ = 50

    Fig. 3.  Variation of ${\rho _ + }\left( \tau \right)$ which is a function of noise intensity D, relative strength $\varepsilon $ and recycling lag $\tau $ respectively with the asymmetry $\gamma $ ($\gamma \!= \! 0.1,\; \gamma = 0.04,\; \gamma \! = \! - 0.02$): (a) $\varepsilon = 0.2, \; \tau = 50$; (b) $D = 0.1, \; \varepsilon = 0.2$; (c) D = 0.1, τ = 50

    图 4  驻留时间分布函数随相关强度$\varepsilon $的变化(实线是从(25)式中得到的理论结果, 圈线表示数值模拟结果, 且$D = 0.1,\; \gamma = 0.1,\; \tau = 150$) (a) $\varepsilon = 0.2$; (b) $\varepsilon = 0.5$; (c) $\varepsilon = 0.7$

    Fig. 4.  Variation of the RTDF with the relative strength ε (the solid line denotes the theoretical results obtained from Eq. (25), and the circle represents the numerical simulation results), where $D = 0.1,\; \gamma = 0.1,\; \tau = 150$: (a) $\varepsilon = 0.2$; (b) $\varepsilon = 0.5$; (c) $\varepsilon = 0.7$.

    图 5  驻留时间分布函数随循环滞后时间$\tau $的变化(实线是从(25)式中得到的理论结果, 圈线表示数值模拟结果, 且 $D \!= \!0.09,\; \gamma \!= \! 0.08,\; \varepsilon = 0.5$) (a) $\tau \!=\! 150$; (b) $\tau \!=\! 200$; (c) $\tau = 300$

    Fig. 5.  Variation of the RTDF with the recycling lag $\tau $ (the solid line denotes the theoretical results obtained from Eq. (25), and the circle represents the numerical simulation results), where $D = 0.09, \;\gamma = 0.08,\; \varepsilon = 0.5$: (a) $\tau = 150$; (b) $\tau = 200$; (c) $\tau = 300$.

    图 6  $ {\rho _ + }\left( \tau \right)$D$ \varepsilon $的变化, 其中$ \gamma = 0.05, \;\tau = 150$, $ 0.1 \leqslant \varepsilon \leqslant 1$, $ 0.03 \leqslant D \leqslant 0.3$

    Fig. 6.  Variation of ${\rho _ + }\left( \tau \right)$ with D and $\varepsilon $, where $\gamma = 0.05, \tau = 150$, $0.1 \leqslant \varepsilon \leqslant 1$, $0.03 \leqslant D \leqslant 0.3$.

  • [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453Google Scholar

    [2]

    McNamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854Google Scholar

    [3]

    Tognoni E, Cristoforetti G 2016 Opt. Laser Technol. 79 164Google Scholar

    [4]

    Xu P F, Jin Y F 2018 Physica A 492 1281Google Scholar

    [5]

    Zhang Y X, Jin Y F, Xu P F 2019 Chaos 29 023127Google Scholar

    [6]

    Xu P F, Jin Y F, Zhang Y X 2019 Appl. Math. Comput. 346 352Google Scholar

    [7]

    Tsimring L, Pikovsky A 2001 Phys. Rev. Lett. 87 250602Google Scholar

    [8]

    Yang J H, Sanjuán M A F, Liu H G, Litak G, Li X 2016 Commun. Nonlinear Sci. Numer. Simul. 41 104Google Scholar

    [9]

    Nicolis C, Nicolis G 2017 Phys. Rev. E 95 032219Google Scholar

    [10]

    Gammaitoni L, Marchesoni F, Menichella-Saetta E, Santucci S 1989 Phys. Rev. Lett. 62 349Google Scholar

    [11]

    Werner T M, Kadlec R H 2000 Ecol. Eng. 15 77Google Scholar

    [12]

    Masoller C 2003 Phys. Rev. Lett. 90 020601Google Scholar

    [13]

    Curtin D, Hegarty S, Goulding D, Houlihan J, Busch T, Masoller C, Huyet G 2004 Phys. Rev. E 70 031103Google Scholar

    [14]

    Schnellmann M A, Donat F, Scott S A, et al. 2018 Appl. Energy 216 358Google Scholar

    [15]

    Serres M, Schweich D, Vidal V, et al. 2018 Chem. Eng. Sci. 190 149Google Scholar

    [16]

    Escotet-Espinoza M S, Moghtadernejad S, Oka S, et al. 2019 Powder Technol. 342 744Google Scholar

    [17]

    Borromeo M, Giusepponi S, Marchesoni F 2006 Phys. Rev. E 74 031121Google Scholar

    [18]

    Goulding D, Melnik S, Curtin D, Piwonski T, Houlihan J, Gleeson J, Huyet G 2007 Phys. Rev. E 76 031128Google Scholar

    [19]

    Borromeo M, Marchesoni F 2007 Phys. Rev. E 75 041106Google Scholar

    [20]

    Ma J, Hou Z X, Xin H W 2009 Eur. Phys. J. B 69 101Google Scholar

    [21]

    Ma J, Gao Q Y 2011 Sci. China Chem. 54 1504Google Scholar

    [22]

    Jia Z L, Mei D C 2012 Eur. Phys. J. B 85 139Google Scholar

    [23]

    Sun Z K, Yang X L, Xu W 2012 Phys. Rev. E 85 061125Google Scholar

    [24]

    Sun Z K, Wu Y Z, Du L, Xu W 2016 Nonlinear Dyn. 84 1011Google Scholar

    [25]

    Sun Z K, Yang X L, Xiao Y Z, Xu W 2014 Chaos 24 023126Google Scholar

    [26]

    Zeng C H, Wang H, Qing S, Hu J H, Li K Z 2012 Eur. Phys. J. B 85 347Google Scholar

    [27]

    Chamgoué A C, Yamapi R, Woafo P 2012 Eur. Phys. J. Plus 127 59Google Scholar

    [28]

    Chamgoué A C, Yamapi R, Woafo P 2013 Nonlinear Dyn. 73 2157Google Scholar

    [29]

    Jia Z L, Li K Y, Li C, Yang C Y, Mei D C 2015 Eur. Phys. J. B 88 59Google Scholar

  • [1] 王烨花, 何美娟. 高斯色噪声激励下非对称双稳耦合网络系统的随机共振. 物理学报, 2022, 71(19): 190501. doi: 10.7498/aps.71.20220909
    [2] 彭皓, 任芮彬, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211272
    [3] 吴亚珍, 孙中奎. Noise recycling作用下非对称双稳系统的驻留时间分布函数研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191752
    [4] 杨秀妮, 杨云峰. 具有时滞反馈的非对称双稳系统中的振动共振研究. 物理学报, 2015, 64(7): 070507. doi: 10.7498/aps.64.070507
    [5] 张刚, 胡韬, 张天骐. Levy噪声激励下的幂函数型单稳随机共振特性分析. 物理学报, 2015, 64(22): 220502. doi: 10.7498/aps.64.220502
    [6] 焦尚彬, 杨蓉, 张青, 谢国. α稳定噪声驱动的非对称双稳随机共振现象. 物理学报, 2015, 64(2): 020502. doi: 10.7498/aps.64.020502
    [7] 季袁冬, 张路, 罗懋康. 幂函数型单势阱随机振动系统的广义随机共振. 物理学报, 2014, 63(16): 164302. doi: 10.7498/aps.63.164302
    [8] 田艳, 黄丽, 罗懋康. 噪声交叉关联强度的时间周期调制对线性过阻尼系统的随机共振的影响. 物理学报, 2013, 62(5): 050502. doi: 10.7498/aps.62.050502
    [9] 顾仁财, 许勇, 张慧清, 孙中奎. 非高斯Lvy噪声驱动下的非对称双稳系统的相转移和平均首次穿越时间. 物理学报, 2011, 60(11): 110514. doi: 10.7498/aps.60.110514
    [10] 张静静, 靳艳飞. 非高斯噪声驱动下非对称双稳系统的平均首次穿越时间与随机共振研究. 物理学报, 2011, 60(12): 120501. doi: 10.7498/aps.60.120501
    [11] 林敏, 方利民. 双稳系统演化的时间尺度与随机共振的加强. 物理学报, 2009, 58(4): 2136-2140. doi: 10.7498/aps.58.2136
    [12] 郭立敏, 徐 伟, 阮春蕾, 赵 燕. 二值噪声驱动下二阶线性系统的随机共振. 物理学报, 2008, 57(12): 7482-7486. doi: 10.7498/aps.57.7482
    [13] 陈德彝, 王忠龙. 噪声间关联程度的时间周期调制对单模激光随机共振的影响. 物理学报, 2008, 57(6): 3333-3336. doi: 10.7498/aps.57.3333
    [14] 周丙常, 徐 伟. 关联噪声驱动的非对称双稳系统的随机共振. 物理学报, 2008, 57(4): 2035-2040. doi: 10.7498/aps.57.2035
    [15] 张娜敏, 徐 伟, 王朝庆. 色噪声驱动的非对称双稳系统的平均首次穿越时间. 物理学报, 2007, 56(9): 5083-5087. doi: 10.7498/aps.56.5083
    [16] 宁丽娟, 徐 伟, 杨晓丽. 色关联噪声驱动的非对称双稳系统中平均首次穿越时间的研究. 物理学报, 2007, 56(1): 25-29. doi: 10.7498/aps.56.25
    [17] 董小娟. 含关联噪声与时滞项的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5618-5622. doi: 10.7498/aps.56.5618
    [18] 周丙常, 徐 伟. 周期混合信号和噪声联合激励下的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [19] 徐 伟, 靳艳飞, 徐 猛, 李 伟. 偏置信号调制下色关联噪声驱动的线性系统的随机共振. 物理学报, 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
    [20] 靳艳飞, 徐 伟, 马少娟, 李 伟. 非对称双稳系统中平均首次穿越时间的研究. 物理学报, 2005, 54(8): 3480-3485. doi: 10.7498/aps.54.3480
计量
  • 文章访问数:  4737
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-14
  • 修回日期:  2020-03-31
  • 刊出日期:  2020-06-20

/

返回文章
返回