搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义布洛赫条件下二维晶格的磁交换作用

赵红艳 蒋灵子 朱岩 潘燕飞 樊济宇 马春兰

引用本文:
Citation:

广义布洛赫条件下二维晶格的磁交换作用

赵红艳, 蒋灵子, 朱岩, 潘燕飞, 樊济宇, 马春兰

Magnetic exchange interaction in two-dimensional lattice under generalized Bloch condition

Zhao Hong-Yan, Jiang Ling-Zi, Zhu Yan, Pan Yan-Fei, Fan Ji-Yu, Ma Chun-Lan
PDF
HTML
导出引用
  • 二维磁性材料是近几年新兴的研究领域, 该材料在开发自旋电子器件等领域具备良好的应用潜能. 为了了解二维磁性材料的磁性质, 明确体系内各近邻磁性原子间的磁相互作用非常重要. 第一性原理为各近邻磁交换参数的计算奠定了基础. 目前各近邻参数的第一性原理计算常用的是能量映射法, 但这种方法存在一定的缺陷. 本文通过广义布洛赫条件推导了3种常见二维磁性结构的海森伯作用与Dzyaloshinskii-Moriya (DM)相互作用的自旋螺旋色散关系, 这3种结构为四方结构, 元胞包含一个磁性原子的六角结构, 元胞包含两个磁性原子的六角结构. 为了将本文推导的自旋螺旋色散关系应用于实际, 我们通过第一性原理计算了一些材料的海森伯和DM作用的交换参数, 这些材料分别是MnB, VSe 2, MnSTe, Cr 2I 3Cl 3. 其中, MnSTe和Cr 2I 3Cl 3都属于二维Janus材料, 磁性原子层的上下层对称性破缺, 整个体系存在DM相互作用.
    Two-dimensional magnetic material which has been rapidly developed in recent years, has potential applications in developing spintronic devices. In order to understand the magnetic properties of two-dimensional magnetic materials, it is necessary to comprehend the magnetic interaction which is estimated by the exchange parameters between the magnetic atoms. The calculation of the magnetic exchange parameters is based on the first-principle. The commonly used method of determining the values of exchange parameters is energy-mapping. However, this method has some disadvantages. In this paper, the spin-spiral dispersion relationship is derived under the Heisenberg interaction and the Dzyaloshinskii-Moriya (DM) interaction through the generalized Bloch condition of three common two-dimensional magnetic structures: a tetragonal structure, a hexagonal structure in which the cell contains one magnetic atom, a hexagonal structure in which the cell contains two magnetic atoms. The magnetic exchange parameters of some materials are calculated through the first principle. These materials are MnB, VSe 2 MnSTe and Cr 2I 3Cl 3. Among them, the MnSTe and Cr 2I 3Cl 3 are two-dimensional Janus materials, which means that they have space-reversal symmetry broken, that is why there is DM interaction in the system.
      通信作者: 朱岩, yzhu@nuaa.edu.cn ; 马春兰, wlxmcl@mail.usts.edu.cn
      Corresponding author: Zhu Yan, yzhu@nuaa.edu.cn ; Ma Chun-Lan, wlxmcl@mail.usts.edu.cn
    [1]

    Bi C, Liu Y H, Newhouse-Illige T, Xu M, Rosales M, Freeland J W, Mryasov O, Zhang S F, Velthuis S G E, Wang W G 2014 Phys. Rev. Lett. 113 267202

    [2]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 9439Google Scholar

    [3]

    Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 2516Google Scholar

    [4]

    Hu C, Zhang D, Yan F G, Li Y C, Lv Q S, Zhu W K, Wei Z M, Chang K, Wang K Y 2020 Sci. Bull. 65 1072Google Scholar

    [5]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [6]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [7]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [8]

    Deng Y, Yu Y, Song Y, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [9]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [10]

    O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y Q, Lee C H, Brenner M R, Rajan S, Gupta J, McComb D W, Kawakami R K 2018 Nano. Lett. 18 3125Google Scholar

    [11]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar

    [12]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [13]

    Muehlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [14]

    Zhu Y, Ma C L, Shi D N, Zhang K C 2014 Phys. Lett. A 378 2234Google Scholar

    [15]

    Yang H X, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210Google Scholar

    [16]

    Pan Y, Zhu Y, Shi D N, Wei X Y, Ma C L, Zhang K C 2015 J. Alloys Compd. 644 341Google Scholar

    [17]

    Xiang H J, Lee C, Koo H J, Gong X G 2013 Dalton Trans. 42 823Google Scholar

    [18]

    Marsman M, Hafner J 2002 Phys. Rev. B 66 224409Google Scholar

    [19]

    Sandratskii L M 1991 J. Phys. Condens. Matter 3 8565Google Scholar

    [20]

    Knöpfle K, Sandratskii L M, Kübler J 2000 Phys. Rev. B 62 5564Google Scholar

    [21]

    Hector A L, Jura M, Levason W, Reid S D, Reid G 2009 New J. Chem. 33 641Google Scholar

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [23]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [24]

    Farooq M U, Hashmi A, Khan I, Hong J S 2017 Sci. Rep. 7 17101Google Scholar

    [25]

    Liu C, Fu B T, Yin H B, Zhang G B, Dong C 2020 Appl. Phys. Lett. 117 103101Google Scholar

    [26]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W B, Guo H, Jin Z H, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [27]

    He J J, Li S 2018 Comput. Mater. Sci. 152 151Google Scholar

    [28]

    Xu C S, Feng J S, Prokhorenko S, Nahas Y, Xiang H J, Bellaiche L 2020 Phys. Rev. B 101 060404Google Scholar

    [29]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar

  • 图 1  奈尔型斯格明子的磁矩结构示意图

    Fig. 1.  Spin configuration of Néel skyrmions.

    图 2  VSe 2原子结构示意图 (a) 俯视图; (b) 侧视图

    Fig. 2.  The view of the lattice structure for VSe 2: (a) Top view; (b) side view.

    图 3  (a)六角结构的原胞基矢和倒格基矢的示意图; (b)六角结构的磁性原子及各近邻原子的分布; (c) 磁性原子的磁矩变化坐标系(蓝色坐标轴)以及二维晶格坐标系(黑色坐标轴)示意图

    Fig. 3.  (a) The labeled a 1 and a 2 are basis vectors and b 1 and b 2 are reciprocal lattice vectors. (b) distribution of neighboring atoms; (c) blue axis and black axis represent the coordinate system of magnetic moment and two dimensional lattice , respectively.

    图 4  离散点是VSe 2体系通过程序计算得到的自旋螺旋能量色散关系 E( q ), 其中 q 是自旋螺旋的波矢; 实线是拟合曲线

    Fig. 4.  Scatter symbols are energy dispersion E( q ) as a function of the spiral wave vector q calculated by program, lines are fitted ones.

    图 5  MnB原子结构示意图 (a) 俯视图; (b) 侧视图

    Fig. 5.  Structure of MnB: (a) Vertical view; (b) side view.

    图 6  离散点是MnB体系通过程序计算得到的自旋螺旋能量色散关系 E( q ), 其中 q 是自旋螺旋的波矢; 实线是拟合曲线

    Fig. 6.  Scatter symbols are energy dispersion E( q ) of MnB as a function of the spiral wave vector q calculated by program, lines are fitted ones.

    图 7  离散点是MnB体系通过程序计算得到的自旋螺旋能量色散关系 E( q ), 其中 q 是自旋螺旋的波矢; 实线是拟合曲线

    Fig. 7.  Scatter symbols are energy dispersion E( q ) of MnB as a function of the spiral wave vector q calculated by program, lines are fitted ones.

    图 8  MnSTe原子结构示意图 (a) 俯视图; (b) 侧视图

    Fig. 8.  Atomic structure of MnSTe: (a) Vertical view; (b) side view.

    图 9  (a)离散点是MnSTe体系通过程序计算得到的自旋螺旋能量色散关系 E( q )和 E(– q ), 其中 q 是自旋螺旋的波矢, 实线是拟合曲线; (b)离散点是MnSTe体系通过程序计算的 E( q )与 E(– q )之间的能量差 E DMI( q ), 实线是拟合曲线

    Fig. 9.  (a) Scatter symbols are energy dispersion E( q ) and E(– q ) of MnSTe as a function of the spiral wave vector q calculated by program, lines are fitted ones; (b) scatter symbols are E DMI( q ) which means the difference between E( q ) and E(– q ), lines are fitted ones.

    图 10  Cr 2I 3Cl 3原子结构示意图 (a) 俯视图; (b) 侧视图

    Fig. 10.  Atomic structure of Cr 2I 3Cl 3: (a) Vertical view; (b) side view.

    图 11  (a)离散点是Cr 2I 3Cl 3体系通过程序计算得到的自旋螺旋能量色散关系 E( q )和 E(– q ), 其中 q 是自旋螺旋的波矢, 实线是拟合曲线; (b)离散点是Cr 2I 3Cl 3体系通过程序计算的 E( q )与 E(– q )之间的能量差 E DMI( q ), 实线是拟合曲线

    Fig. 11.  (a) Scatter symbols are energy dispersion E( q ) and E(– q ) of Cr 2I 3Cl 3 as a function of the spiral wave vector q calculated by program, lines are fitted ones; (b) scatter symbols are E DMI( q ) which means the difference between E( q ) and E(– q ), lines are fitted ones.

    表 1  VSe 2结构中磁性原子各近邻的海森伯交换参数大小(单位: meV)

    Table 1.  Calculated parameters of Heisenberg exchange J of VSe 2, J is considered to the eighth neighbor. (The unit of J is meV).

    J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8
    27.24 12.81 –2.8 0.59 –1 –1.5 –0.5 0.38
    下载: 导出CSV

    表 2  MnB结构( U= 3 eV)中磁性原子各近邻的海森伯交换参数大小(单位: meV)

    Table 2.  Calculated parameters of Heisenberg exchange J of MnB, J is considered to the eighth neighbor. (The unit of J is meV).

    J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8
    21.22 44.5 –2.52 –4.53 0.952 1.08 0.569 1.27
    下载: 导出CSV

    表 3  MnSTe结构中磁性原子各近邻的海森伯交换参数大小(单位: meV)

    Table 3.  Calculated parameters of Heisenberg exchange J of MnSTe, J is considered to the eighth neighbor. (The unit of J is meV).

    J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8
    5.49 4.64 6 –1.09 –1.32 0.765 –0.046 0.76
    下载: 导出CSV

    表 4  MnSTe结构中磁性原子各近邻的DM交换参数大小(单位: meV)

    Table 4.  Calculated parameters of DM exchange d of MnSTe, d is considered to the forth neighbor. (The unit of d is meV).

    d 1 d 2 d 3 d 4
    5.46 1.77 2.78 –0.248
    下载: 导出CSV

    表 5  Cr 2I 3Cl 3结构中磁性原子各近邻的海森伯交换参数大小(单位: meV)

    Table 5.  Calculated parameters of Heisenberg exchange J of Cr 2I 3Cl 3, J is considered to the eighth neighbor. (The unit of J is meV).

    J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8
    12.92 –0.35 2.11 3.55 –1.46 –0.67 –0.11 0.841
    下载: 导出CSV

    表 6  Cr 2I 3Cl 3结构中磁性原子各近邻的DM交换参数大小(单位: meV)

    Table 6.  Calculated parameters of DM exchange d of Cr 2I 3Cl 3, d is considered to the forth neighbor. (The unit of d is meV).

    d 1 d 2 d 3 d 4
    –0.88 0.378 1.04 –0.0493
    下载: 导出CSV
  • [1]

    Bi C, Liu Y H, Newhouse-Illige T, Xu M, Rosales M, Freeland J W, Mryasov O, Zhang S F, Velthuis S G E, Wang W G 2014 Phys. Rev. Lett. 113 267202

    [2]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 9439Google Scholar

    [3]

    Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 2516Google Scholar

    [4]

    Hu C, Zhang D, Yan F G, Li Y C, Lv Q S, Zhu W K, Wei Z M, Chang K, Wang K Y 2020 Sci. Bull. 65 1072Google Scholar

    [5]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [6]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [7]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [8]

    Deng Y, Yu Y, Song Y, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [9]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [10]

    O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y Q, Lee C H, Brenner M R, Rajan S, Gupta J, McComb D W, Kawakami R K 2018 Nano. Lett. 18 3125Google Scholar

    [11]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar

    [12]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [13]

    Muehlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [14]

    Zhu Y, Ma C L, Shi D N, Zhang K C 2014 Phys. Lett. A 378 2234Google Scholar

    [15]

    Yang H X, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210Google Scholar

    [16]

    Pan Y, Zhu Y, Shi D N, Wei X Y, Ma C L, Zhang K C 2015 J. Alloys Compd. 644 341Google Scholar

    [17]

    Xiang H J, Lee C, Koo H J, Gong X G 2013 Dalton Trans. 42 823Google Scholar

    [18]

    Marsman M, Hafner J 2002 Phys. Rev. B 66 224409Google Scholar

    [19]

    Sandratskii L M 1991 J. Phys. Condens. Matter 3 8565Google Scholar

    [20]

    Knöpfle K, Sandratskii L M, Kübler J 2000 Phys. Rev. B 62 5564Google Scholar

    [21]

    Hector A L, Jura M, Levason W, Reid S D, Reid G 2009 New J. Chem. 33 641Google Scholar

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [23]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [24]

    Farooq M U, Hashmi A, Khan I, Hong J S 2017 Sci. Rep. 7 17101Google Scholar

    [25]

    Liu C, Fu B T, Yin H B, Zhang G B, Dong C 2020 Appl. Phys. Lett. 117 103101Google Scholar

    [26]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W B, Guo H, Jin Z H, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [27]

    He J J, Li S 2018 Comput. Mater. Sci. 152 151Google Scholar

    [28]

    Xu C S, Feng J S, Prokhorenko S, Nahas Y, Xiang H J, Bellaiche L 2020 Phys. Rev. B 101 060404Google Scholar

    [29]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar

  • [1] 秦文静, 徐波, 孙宝珍, 刘刚. 原子吸附的二维CrI3铁磁半导体电学和磁学性质的第一性原理研究. 物理学报, 2021, 70(11): 117101. doi: 10.7498/aps.70.20210090
    [2] 赵红艳, 蒋灵子, 朱岩, 潘燕飞, 樊济宇, 马春兰. 广义布洛赫条件下二维晶格的磁交换作用. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211317
    [3] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [4] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究. 物理学报, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [5] 刘飞, 文志鹏. Zr, Nb, V在α-Fe(C)中的占位、电子结构及键合作用的第一性原理研究. 物理学报, 2019, 68(13): 137101. doi: 10.7498/aps.68.20182282
    [6] 黄灿, 李小影, 朱岩, 潘燕飞, 樊济宇, 施大宁, 马春兰. 第一性原理计算Co/h-BN界面上的微弱Dzyaloshinsky-Moriya相互作用. 物理学报, 2018, 67(11): 117102. doi: 10.7498/aps.67.20180337
    [7] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算. 物理学报, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [8] 杨子元. 掺杂晶体材料ZnGa2O4:Fe3+局域结构畸变及其微观自旋哈密顿参量研究. 物理学报, 2014, 63(17): 177501. doi: 10.7498/aps.63.177501
    [9] 王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺. 新型稀磁半导体Mn掺杂LiZnAs的第一性原理研究. 物理学报, 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [10] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [11] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [12] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [13] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [14] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [15] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算. 物理学报, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [16] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [17] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [18] 魏 群, 杨子元, 王参军, 许启明. Al2O3:V3+晶体局域结构及其自旋哈密顿参量研究. 物理学报, 2007, 56(4): 2393-2398. doi: 10.7498/aps.56.2393
    [19] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [20] 戴耀东, 何 云, 黄红波, 邵 挺, 夏元复. 嵌入化合物Fe0.95PS3(MV)0.11的合成与磁性能研究. 物理学报, 2003, 52(12): 3020-3026. doi: 10.7498/aps.52.3020
计量
  • 文章访问数:  5668
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-16
  • 修回日期:  2021-09-20
  • 上网日期:  2021-12-28
  • 刊出日期:  2022-01-05

/

返回文章
返回