搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种具有低串扰抗弯曲的单沟槽十九芯单模异质光纤

马丽伶 李曙光 李建设 孟潇剑 李增辉 王璐瑶 邵朋帅

引用本文:
Citation:

一种具有低串扰抗弯曲的单沟槽十九芯单模异质光纤

马丽伶, 李曙光, 李建设, 孟潇剑, 李增辉, 王璐瑶, 邵朋帅

A kind of single trench 19-core single-mode heterogeneous fiber with low crosstalk and anti-bending performance

Ma Li-Ling, Li Shu-Guang, Li Jian-She, Meng Xiao-Jian, Li Zeng-Hui, Wang Lu-Yao, Shao Peng-Shuai
PDF
HTML
导出引用
  • 飞速增长的光通信容量需求推动着光纤技术的发展, 基于空分复用技术的多芯光纤作为突破传统单模光纤容量限制的方法引起了广泛的关注. 本文将纤芯异质结构与低折射率沟槽结合, 设计了1种具有低串扰的十九芯单模光纤结构, 该结构由环绕沟槽的3种不同参数的纤芯按正六边形排布构成,在C+L波段能实现稳定单模传输. 研究结果表明: 在波长为1.55 μm时, 通过在沟槽中进行掺氟处理, 可以使光纤的芯间串扰降低至–39.52 dB/100 km. 此外在弯曲半径为100 mm时, 弯曲损耗为–7.7×10–5 dB/m且色散低于24 ps/(nm·km). 纤芯中基模的有效模场面积约为80 μm2, 有利于降低非线性效应. 与传统单模光纤及单沟槽同质结构光纤相比, 该结构具有更低的串扰、更好的抗弯曲性能和更大的模场面积. 本文设计的光纤适用于空分复用系统中远距离大容量的传输.
    The rapid growth of the demand for optical communication capacity promotes optical fiber communication technology. As a method to break through the capacity limitation of conventional single-mode fiber, multi-core fiber based on space division multiplexing technology has attracted extensive attention. In order to respond to the capacity of traditional single-mode fiber positively, we design a scheme of single-mode multi-core fiber combining the arrangement of heterogeneous fiber cores with secondary structure of low refractive index trench. The scheme consists of nineteen fiber cores arranged in a hexagonal closed-packed structure. Heterogeneous trench-assisted multi-core fiber (Hetero-TA-MCF) has low inter-core crosstalk and excellent anti-bending performance. Compared with conventional single-mode fiber, the Hetero-TA-MCF has the large transmission capacity and average effective area of each core of about 80 μm2. The transmission capacity of 19 cores is equivalent to the sum of the transmission capacities of 19 single-core single-mode fibers. We use COMSOL Multiphysics to simulate the fiber structure, finding the parameters that affect the properties of the fiber, selecting parameters and structures for optimal performance. Then we calculate the transmission characteristics by the finite element method,and the results of substantive simulating compute are as follows. The Hetero-TA-MCF achieves a low inter-core crosstalk (XT) of about –39 dB/100 km so that each core can be transmitted as a separate channe. It meets the standard of multi-core fiber long distance transmission. The XT of the heterogeneous 19-core single-mode fiber is suitable for multi-core fiber long distance transmission standards. The bending loss of the outermost fiber core is –7.7×10–5 dB/m when the bending radius is 10 cm, which reflects the low loss characteristics of the structure. The nonlinear coefficients of three kinds of core are 1.28 W–1·km–1, 1.31 W–1·km–1, and 1.30 W–1·km–1 respectively, reducing the nonlinear effect of optical fiber effectively; the dispersions of three kinds of cores are less than 24 ps/(nm·km). In addition, the steady single-mode transmission is achieved in C+L band. Compared with traditional single-mode fiber and single-trench homogeneous fiber, the proposed fiber in this work has low crosstalk, good bending resistance and large mode field area, which is suitable for long distance and large capacity transmission in space division multiplexing system.
      通信作者: 李曙光, shuguangli@ysu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFB2204001)和国家自然科学基金(批准号: 12074331)资助的课题
      Corresponding author: Li Shu-Guang, shuguangli@ysu.edu.cn
    • Funds: Project is supported by National Key Research and Development Project of China (Grant No. 2019YFB2204001), the National Natural Science Foundation of China (Grant No.12074331).
    [1]

    Saitoh K, Matsuo S 2016 J. Light. Technol. 34 55Google Scholar

    [2]

    Cai J X, Cai Y, Davidson C R, Lucero A, Zhang H, Foursa D G, Sinkin O V, Patterson W W, Pilipetskii A, Mohs G, Bergano N S 2011 Conference on Optical Fiber Communication (OFC)/National Fiber Optic Engineers Conference(NFOEC) Los Angeles, California United States, March 6–10, 2011

    [3]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [4]

    Li Z H, Wang L Y, Wang Y, Li S G, Meng X J, Guo Y, Wang G R, Zhang H, Cheng T L, Xu W W, Qin Y, Zhou H 2021 Opt. Express 29 26418Google Scholar

    [5]

    Sakamoto T, Saitoh K, Saitoh S, Shibahara K, Wada M, Abe Y, Urushibara A, Takenaga K, Mizuno T, Matsui T, Aikawa K, Miyamoto Y, Nakajima K 2018 J. Light. Technol. 36 1226Google Scholar

    [6]

    Ye F H, Tu J J, Saitoh K, Morioka T 2014 Opt. Express 22 23007Google Scholar

    [7]

    Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saitoh K, Koshiba M 2011 Conference on Optical Fiber Communication (OFC)/National Fiber Optic Engineers Conference (NFOEC) Los Angeles, California United States, March 6–10, 2011

    [8]

    靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生 2017 物理学报 66 024210Google Scholar

    Jin W X, Ren G B, Pei L, Jiang Y C, Wu Y, Shen Y, Yang Y G, Ren W H, Jian S S 2017 Acta Phys. Sin. 66 024210Google Scholar

    [9]

    Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja D M, Schulzgen A, Richardson M, Linares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photon. Technol. Lett. 24 1914Google Scholar

    [10]

    Egorova O N, Semjonov S L, Senatorov A K, Salganskii M Y, Koklyushkin A V, Nazarov V N, Korolev A E, Kuksenkov D V, Li M J, Dianov E M 2014 Opt. Lett. 39 2168Google Scholar

    [11]

    Tu J J, Saitoh K, Koshiba M, Takenaga K, Matsuo S 2013 J. Light. Technol. 31 2590Google Scholar

    [12]

    Tu J J, Saitoh K, Koshiba M, Takenaga K, Matsuo S 2012 Opt. Express 20 15157Google Scholar

    [13]

    Tu J J, Saitoh K, Takenaga K, Matsuo S 2014 Opt. Express 22 4329Google Scholar

    [14]

    Koshiba M, Saitoh K, Takenaga K, Matsuo S 2011 Opt. Express 19 102Google Scholar

    [15]

    Sakaguchi J, Puttnam B J, Klaus W, Awaji Y, Wada N, Kanno A, Kawanishi T, Imamura K, Inaba H, Mukasa K, Sugizaki R, Kobayashi T, Watanabe M 2012 Optical Fiber Communication Conference Los Angeles, California United States, March 4–8, 2012

    [16]

    Amma Y, Sasaki Y, Takenaga K, Matsuo S, Tu J, Saitoh K, Koshiba M, Morioka T, Miyamoto Y 2015 Optical Fiber Communications Conference and Exhibition (OFC) Los Angeles, California United States, March 22–26, 2015

    [17]

    Xie X Q, Tu J J, Zhou X, Long K P, Saitoh K 2017 Opt. Express 25 5119Google Scholar

    [18]

    Ademgil H, Haxha S 2012 Opt. Commun. 285 1514Google Scholar

    [19]

    Koshiba M, Saitoh K, Takenaga K, Matsuo S 2012 IEEE. Photon. J. 4 1987Google Scholar

    [20]

    Wang L Y, Li S G, Meng X J, Guo Y, Li Z H 2021 J. Opt. Soc. Am. B 38 3849Google Scholar

    [21]

    李增辉, 李曙光, 李建设, 王璐瑶, 王晓凯, 王彦, 龚琳, 程同蕾 2021 物理学报 70 104208Google Scholar

    Li Z H, Li S G, Li J S, Wang L Y, Wang X K, Wang Y, Gong L, Cheng T L 2021 Acta Phys. Sin. 70 104208Google Scholar

    [22]

    Wang L Y, Li S G, Li J S, Meng X J, Guo Y, Li Z H, Wang X K, Wang Y 2021 Opt. Fiber Technol. 67 102721Google Scholar

    [23]

    Puttnam B J, Luís R S, Klaus W, et al. 2015 European Conference on Optical Communication (ECOC) Valencia, Spain, September 27–October 1, 2015

  • 图 1  单沟槽辅助型异质十九芯光纤

    Fig. 1.  Schematic structure of heterogeneous trench-assisted 19-core fiber.

    图 2  纤芯折射率分布

    Fig. 2.  Refractive index profile of adjacent fiber-core.

    图 3  芯间串扰与沟槽宽度的关系

    Fig. 3.  The relation between crosstalk and trench width.

    图 4  芯间串扰与沟槽相对折射率之间的关系

    Fig. 4.  Relation between crosstalk and the relative refractive index of the trench.

    图 5  不同纤芯间的串扰与弯曲半径之间的关系 (a)纤芯1和纤芯2之间的串扰; (b)纤芯1和纤芯3之间的串扰; (c)纤芯2和纤芯3之间的串扰

    Fig. 5.  Crosstalk dependence on bending radius of (a) Core 1-Core 2; (b) Core 1-Core 3 and (c) Core 2-Core 3.

    图 6  弯曲半径增加到3000—5000 mm时的芯间串扰

    Fig. 6.  Crosstalk dependence on bending radius (Rpk = 3000–5000 mm).

    图 7  芯间串扰与工作波长的关系

    Fig. 7.  The relationship between crosstalk and wavelength.

    图 8  有效模场面积与工作波长的关系

    Fig. 8.  The relationship between Aeff and wavelength.

    图 9  (a)弯曲损耗与芯间距的关系; (b)芯间串扰与芯间距的关系

    Fig. 9.  Bending loss and crosstalk dependence on core pitch: (a) Bending loss; (b)crosstalk.

    图 10  色散与波长的关系

    Fig. 10.  The relation between the dispersion and wavelength.

    图 11  非线性系数与波长的关系

    Fig. 11.  The relationship between nonlinear coefficient and wavelength.

    图 12  十九芯异质光纤预制棒的制备流程

    Fig. 12.  Fabrication process of 19-core heterogeneous fiber preform.

    表 1  光纤的初始参数

    Table 1.  The initial fiber parameters.

    参数纤芯 1纤芯 2纤芯 3
    纤芯半径/μm4.794.874.83
    纤芯与包层的相对折射率差/%0.260.310.29
    沟槽宽度/μm4.5
    沟槽与包层的相对折射率差/%–0.5
    芯间距/μm42
    包层直径 / μm240
    下载: 导出CSV

    表 2  十九芯单模异质光纤的结构参数

    Table 2.  The parameters of the final proposed structure.

    参数纤芯1 /纤芯2 /纤芯3
    纤芯半径/μm4.79/4.87/4.83
    纤芯与包层的相对折射率差/%0.26/0.31/0.29
    芯间距/μm42
    包层直径/μm240
    下载: 导出CSV

    表 3  几种多芯光纤性能对比

    Table 3.  Comparison of performance of several multi-core fibers.

    多芯光纤纤芯数量串扰Aeff/μm2
    沟槽辅助型[7]7–35 dB/100 km70.7
    十九芯同质光纤[15]19–42 dB/ km71.5
    二十二芯光纤[23]22–45 dB/ km~75
    棒辅助型异质结构光纤[17]32–31 dB/100 km74
    沟槽辅助型十九芯异质结构光纤19–39.5 dB/100 km~80
    下载: 导出CSV
  • [1]

    Saitoh K, Matsuo S 2016 J. Light. Technol. 34 55Google Scholar

    [2]

    Cai J X, Cai Y, Davidson C R, Lucero A, Zhang H, Foursa D G, Sinkin O V, Patterson W W, Pilipetskii A, Mohs G, Bergano N S 2011 Conference on Optical Fiber Communication (OFC)/National Fiber Optic Engineers Conference(NFOEC) Los Angeles, California United States, March 6–10, 2011

    [3]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [4]

    Li Z H, Wang L Y, Wang Y, Li S G, Meng X J, Guo Y, Wang G R, Zhang H, Cheng T L, Xu W W, Qin Y, Zhou H 2021 Opt. Express 29 26418Google Scholar

    [5]

    Sakamoto T, Saitoh K, Saitoh S, Shibahara K, Wada M, Abe Y, Urushibara A, Takenaga K, Mizuno T, Matsui T, Aikawa K, Miyamoto Y, Nakajima K 2018 J. Light. Technol. 36 1226Google Scholar

    [6]

    Ye F H, Tu J J, Saitoh K, Morioka T 2014 Opt. Express 22 23007Google Scholar

    [7]

    Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saitoh K, Koshiba M 2011 Conference on Optical Fiber Communication (OFC)/National Fiber Optic Engineers Conference (NFOEC) Los Angeles, California United States, March 6–10, 2011

    [8]

    靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生 2017 物理学报 66 024210Google Scholar

    Jin W X, Ren G B, Pei L, Jiang Y C, Wu Y, Shen Y, Yang Y G, Ren W H, Jian S S 2017 Acta Phys. Sin. 66 024210Google Scholar

    [9]

    Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja D M, Schulzgen A, Richardson M, Linares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photon. Technol. Lett. 24 1914Google Scholar

    [10]

    Egorova O N, Semjonov S L, Senatorov A K, Salganskii M Y, Koklyushkin A V, Nazarov V N, Korolev A E, Kuksenkov D V, Li M J, Dianov E M 2014 Opt. Lett. 39 2168Google Scholar

    [11]

    Tu J J, Saitoh K, Koshiba M, Takenaga K, Matsuo S 2013 J. Light. Technol. 31 2590Google Scholar

    [12]

    Tu J J, Saitoh K, Koshiba M, Takenaga K, Matsuo S 2012 Opt. Express 20 15157Google Scholar

    [13]

    Tu J J, Saitoh K, Takenaga K, Matsuo S 2014 Opt. Express 22 4329Google Scholar

    [14]

    Koshiba M, Saitoh K, Takenaga K, Matsuo S 2011 Opt. Express 19 102Google Scholar

    [15]

    Sakaguchi J, Puttnam B J, Klaus W, Awaji Y, Wada N, Kanno A, Kawanishi T, Imamura K, Inaba H, Mukasa K, Sugizaki R, Kobayashi T, Watanabe M 2012 Optical Fiber Communication Conference Los Angeles, California United States, March 4–8, 2012

    [16]

    Amma Y, Sasaki Y, Takenaga K, Matsuo S, Tu J, Saitoh K, Koshiba M, Morioka T, Miyamoto Y 2015 Optical Fiber Communications Conference and Exhibition (OFC) Los Angeles, California United States, March 22–26, 2015

    [17]

    Xie X Q, Tu J J, Zhou X, Long K P, Saitoh K 2017 Opt. Express 25 5119Google Scholar

    [18]

    Ademgil H, Haxha S 2012 Opt. Commun. 285 1514Google Scholar

    [19]

    Koshiba M, Saitoh K, Takenaga K, Matsuo S 2012 IEEE. Photon. J. 4 1987Google Scholar

    [20]

    Wang L Y, Li S G, Meng X J, Guo Y, Li Z H 2021 J. Opt. Soc. Am. B 38 3849Google Scholar

    [21]

    李增辉, 李曙光, 李建设, 王璐瑶, 王晓凯, 王彦, 龚琳, 程同蕾 2021 物理学报 70 104208Google Scholar

    Li Z H, Li S G, Li J S, Wang L Y, Wang X K, Wang Y, Gong L, Cheng T L 2021 Acta Phys. Sin. 70 104208Google Scholar

    [22]

    Wang L Y, Li S G, Li J S, Meng X J, Guo Y, Li Z H, Wang X K, Wang Y 2021 Opt. Fiber Technol. 67 102721Google Scholar

    [23]

    Puttnam B J, Luís R S, Klaus W, et al. 2015 European Conference on Optical Communication (ECOC) Valencia, Spain, September 27–October 1, 2015

  • [1] 张媛, 姜文帆, 陈明阳. 低串扰低弯曲损耗环形芯少模多芯光纤的设计. 物理学报, 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [2] 王彦, 韩颖, 李增辉, 龚琳, 王璐瑶, 李曙光. 一种沟槽辅助气孔隔离的低串扰高密度异质多芯少模光纤. 物理学报, 2022, 71(2): 024205. doi: 10.7498/aps.71.20210974
    [3] 安毅, 潘志勇, 杨欢, 黄良金, 马鹏飞, 闫志平, 姜宗福, 周朴. 国产长锥形光纤实现400 W单频单模激光输出. 物理学报, 2021, 70(20): 204204. doi: 10.7498/aps.70.20210682
    [4] 孙家程, 王婷婷, 戴洋, 常建华, 柯炜. 基于无芯光纤的多参数测量传感器. 物理学报, 2021, 70(6): 064202. doi: 10.7498/aps.70.20201474
    [5] 郑斯文, 刘亚卓, 罗晓玲, 王丽辉, 张娜, 张晶晶, 金传洋, 徐丙立, 屈强, 陈玲. 三层芯结构在单模大模场面积低弯曲损耗光纤中的应用和分析. 物理学报, 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [6] 王彦, 韩颖, 李增辉, 龚琳, 王璐瑶, 李曙光. 一种沟槽辅助气孔隔离的低串扰高密度异质多芯少模光纤*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210974
    [7] 李增辉, 李曙光, 李建设, 王璐瑶, 王晓凯, 王彦, 龚琳, 程同蕾. 一种具有低串扰低非线性的双沟槽环绕型十三芯五模光纤. 物理学报, 2021, 70(10): 104208. doi: 10.7498/aps.70.20201825
    [8] 靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生. 环绕空气孔结构的双模大模场面积多芯光纤的特性分析. 物理学报, 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [9] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [10] 崔璐, 唐义, 朱庆炜, 骆加彬, 胡珊珊. 多光谱可见光通信信道串扰分析. 物理学报, 2016, 65(9): 094208. doi: 10.7498/aps.65.094208
    [11] 周雨竹, 黄莉莉, 柴路, 王清月, 胡明列. 利用Kagome光纤实现多芯光子晶体光纤的输出合束. 物理学报, 2016, 65(2): 024206. doi: 10.7498/aps.65.024206
    [12] 徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫. 具有四模式的低串扰及大群时延多芯微结构光纤的设计. 物理学报, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [13] 盛新志, 娄淑琴, 尹国路, 鹿文亮, 王鑫. 一种与标准单模光纤高适配的低弯曲损耗光子晶体光纤. 物理学报, 2013, 62(10): 104217. doi: 10.7498/aps.62.104217
    [14] 刘保军, 蔡理. 临近空间单粒子串扰的解析模型. 物理学报, 2012, 61(19): 196103. doi: 10.7498/aps.61.196103
    [15] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [16] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [17] 刘小毅, 张方迪, 张 民, 叶培大. 基于谐振吸收效应的单模单偏振光子晶体光纤研究. 物理学报, 2007, 56(1): 301-307. doi: 10.7498/aps.56.301
    [18] 谭中伟, 曹继红, 陈 勇, 刘 艳, 宁提纲, 简水生. 低串扰的多波长光纤光栅色散补偿器. 物理学报, 2007, 56(1): 274-279. doi: 10.7498/aps.56.274
    [19] 张方迪, 刘小毅, 张 民, 叶培大. 新型空气孔长方形排列单模单偏振光子晶体光纤的数值模拟. 物理学报, 2006, 55(12): 6447-6453. doi: 10.7498/aps.55.6447
    [20] 向望华, 陈晓伟, 谈斌, 张贵忠. 利用单模光纤中的交叉相位调制产生单周期化脉冲的研究. 物理学报, 2004, 53(1): 137-144. doi: 10.7498/aps.53.137
计量
  • 文章访问数:  3501
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-01-28
  • 上网日期:  2022-02-21
  • 刊出日期:  2022-05-20

/

返回文章
返回