搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非钳位感性开关测试下双沟槽4H-SiC 功率MOSFET失效机理研究

郭建飞 李浩 王梓名 钟鸣浩 常帅军 欧树基 马海伦 刘莉

引用本文:
Citation:

非钳位感性开关测试下双沟槽4H-SiC 功率MOSFET失效机理研究

郭建飞, 李浩, 王梓名, 钟鸣浩, 常帅军, 欧树基, 马海伦, 刘莉

Failure mechanism of double-trench (DT) 4H-SiC power MOSFET under unclamped inductive switch test

Guo Jian-Fei, Li Hao, Wang Zi-Ming, Zhong Ming-Hao, Chang Shuai-Jun, Ou Shu-Ji, Ma Hai-Lun, Liu Li
PDF
HTML
导出引用
  • 本文对非钳位感性开关(unclamped inductive switching, UIS)下4H-SiC双沟槽功率MOSFET失效机理进行实验和理论研究. 结果表明, 不同于平面功率MOSFET器件失效机理, 在单脉冲UIS测试下双沟槽功率MOSFET器件的栅极沟槽底角处的氧化层会发生损坏, 导致了器件失效. 测量失效器件的栅泄漏电流和电阻, 发现栅泄漏电流急剧增大, 电阻仅为25 Ω; 失效器件的阈值电压稳定不变. 使用TCAD软件对雪崩状态下的器件电场分布进行仿真计算发现, 最大电场位于栅极沟槽底拐角处, 器件内部最大结温未超过电极金属熔点, 同时也达到了理论与仿真的吻合.
    In this paper, failure mechanism of DT 4H-SiC power MOSFET under unclamped inductive switch (UIS) test is evaluated by combination of experiment and theoretical research. The results show that unlike planar 4H-SiC power MOSFET, the gate oxide at the corner of of gate trench is destroyed under the UIS test, therefore, the device under test failed. And then, measurement results of the gate leakage and resistance between gate and source (Rgs) of the failed device indicate that gate leakage increases sharply and Rgs is only 25 Ω, however, the threshold voltage of failure device is unchanged. The analysis of the inner electrical field under avalanche state by using the TCAD software shows that the maximum electrical field exists at the corner of gate trench and the maximum junction temperature does not exceed the melt point of metal. These results are consistent with the experimental results .
      通信作者: 刘莉, liuli@mail.xidian.edu.cn
    • 基金项目: 陕西省重点研发一般项目 (批准号: 2020GY-053)资助的课题.
      Corresponding author: Liu Li, liuli@mail.xidian.edu.cn
    • Funds: Project supported by the General Project of the Key Project Shaanxi Province, China(Grant No. 2020GY-053).
    [1]

    She X, Lucia O, Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193Google Scholar

    [2]

    Huang A Q 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, December 2–6, 2016 p528

    [3]

    Kumar A, Parashar S, Baliga J, Bhattacharya S 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, May 1–3, 2008 p2737

    [4]

    Kumar A, Kokkonda R K, Bhattacharya S, Veliadis V 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Raleigh, NC, USA, 29–31 October, 2019 p438

    [5]

    Sundaresan S, Mulpuri V, Jeliazkov S, Singh R 2019 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, March 4–6, 2019 p1

    [6]

    Gao Z, Cao L, Guo Q, Sheng K 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, April 1–3, 2020 p2601

    [7]

    Ren N, Hu H, Wang K L, Zuo Z, Li R, Sheng K 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Chicago, USA, May 13–17, 2018 p431

    [8]

    Yao K, Yano H, Iwamuro N 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD) June 2–5, 2021 p115

    [9]

    Wei J X, Liu S Y, Zhao H B, Fu H, Zhang X B, Li S Y, Sun W F 2021 IEEE Trans. Emerg. Sel. Topics Power Electron. 9 2190Google Scholar

    [10]

    Li X, Tong X, Hu R, Wen Y, Zhu H, Deng X C, Sun Y K, Chen WJ, Bai S, Zhang B 2021 IEEE Trans. Emerg. Sel. Topics Power Electron. 9 2147Google Scholar

    [11]

    Hatakeyama T, Fukuda K, Okumura H, 2013 IEEE T. on Electron Dev. 60 613Google Scholar

    [12]

    https://fscdn.rohm.com/en/products/databook/datasheet/discrete/sic/mosfet/sct3080kr-e.pdf

  • 图 1  4H-SiC 功率MOS UIS应力产生电路图 (a) UIS测试电路原理图; (b) UIS实验装置图

    Fig. 1.  UIS test circuit of 4H-SiC power MOSFET: (a) Schematic circuit of UIS test; (b) setup of UIS test bench.

    图 2  单脉冲 UIS 测试失效前最后一次实验波形 (划线)($ {L}_{\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{d}} $ = 3.3 mH, $ {t}_{\mathrm{a}\mathrm{v}} $ = 20 μs, $ {E}_{\mathrm{a}\mathrm{v}} $ = 0.33 J)与单脉冲 UIS 测试失效实验波形(实线)($ {L}_{\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{d}} $ = 3.3 mH, $ {t}_{\mathrm{a}\mathrm{v}} $ = 15 μs, $ {E}_{\mathrm{a}\mathrm{v}} $ = 0.37 J)

    Fig. 2.  Experimental waveforms before failure under single UIS test(solid waveform) ($ {L}_{\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{d}} $ = 3.3 mH, $ {t}_{\mathrm{a}\mathrm{v}} $ = 20 μs, $ {E}_{\mathrm{a}\mathrm{v}} $ = 0.33 J); experimental waveforms during failure under single UIS test (lineation waveform)($ {L}_{\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{d}} $ = 3.3 mH, $ {t}_{\mathrm{a}\mathrm{v}} $ = 15 μs, $ {E}_{\mathrm{a}\mathrm{v}} $ = 0.37 J).

    图 3  UIS 测试失效后拆封的双沟槽4H-SiC MOSFET (1200 V/80 mΩ) 俯视图 (a) 4H-SiC功率MOS器件压焊点; (b) UIS测试DUT失效时SEM图

    Fig. 3.  Top view of the decapsulated DT 4H-SiC MOSFET (1200 V/80 mΩ): (a) Top view of the solder joint; (b) SEM photo of failured DUT UIS test.

    图 4  4H-SiC 功率MOS器件栅泄漏电流和阈值电压变化随$ {E}_{\mathrm{a}\mathrm{v}} $变化 (a) 4H-SiC 功率MOS器件栅泄漏电流随$ {E}_{\mathrm{a}\mathrm{v}} $的变化; (b)阈值电压随$ {E}_{\mathrm{a}\mathrm{v}} $的变化

    Fig. 4.  Gate leakage and $ {V}_{\mathrm{t}\mathrm{h}} $ of 4H-SiC power MOSFET vs. $ {E}_{\mathrm{a}\mathrm{v}}: $ Gate leakage of 4H-SiC Power MOSFET vs. $\left(\mathrm{b}\right){V}_{\mathrm{t}\mathrm{h}} $$ \;\mathrm{v}\mathrm{s}.\; {E}_{\mathrm{a}\mathrm{v}}$

    图 5  双沟槽4H-SiC 功率MOSFET横截面

    Fig. 5.  Cross-section of DT 4H-SiC Power MOSFET.

    图 6  界面态密度在禁带中的分布

    Fig. 6.  SiC/SiO2 interface state density profile used in this simulation.

    图 7  实验与仿真转移特性曲线对比

    Fig. 7.  Transfer characteristics of experiment results vs. simulation one.

    图 8  实验与仿真输出特性曲线对比

    Fig. 8.  Output characteristics of experimental results vs. simulation ones.

    图 9  雪崩失效前实验和仿真波形对比($ {I}_{\mathrm{a}\mathrm{v}} $ = 14 A )

    Fig. 9.  Comparison of before and after avalanche failure ($ {I}_{\mathrm{a}\mathrm{v}} $ = 14 A).

    图 10  DUT最大结温随$ {E}_{\mathrm{a}\mathrm{v}} $变化和图9(a)点处器件内部温度分布图 DUT最大结温随$ {E}_{\mathrm{a}\mathrm{v}} $变化; (b)图9最大结温a点处器件内部温度分布图

    Fig. 10.  Maxium junction temperature vs. $ {E}_{\mathrm{a}\mathrm{v}} $ and temperature distribution in DUT: (a) Maxium junction temperature; (b) lattice temperature distributionvs. $ {E}_{\mathrm{a}\mathrm{v}} $ of a point in Fig.9.

    图 11  器件击穿条件下内部电场分布 (a)内部电场分布(Vds = 1743 V); (b)沿A1-A2和B1-B2方向电场分布

    Fig. 11.  Electrical field distribution in DUT: (a) Electrical field distribution in DUT(Vds = 1743 V); (b) electrical field along A1-A2 and B1-B2.

  • [1]

    She X, Lucia O, Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193Google Scholar

    [2]

    Huang A Q 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, December 2–6, 2016 p528

    [3]

    Kumar A, Parashar S, Baliga J, Bhattacharya S 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, May 1–3, 2008 p2737

    [4]

    Kumar A, Kokkonda R K, Bhattacharya S, Veliadis V 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Raleigh, NC, USA, 29–31 October, 2019 p438

    [5]

    Sundaresan S, Mulpuri V, Jeliazkov S, Singh R 2019 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, March 4–6, 2019 p1

    [6]

    Gao Z, Cao L, Guo Q, Sheng K 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, April 1–3, 2020 p2601

    [7]

    Ren N, Hu H, Wang K L, Zuo Z, Li R, Sheng K 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Chicago, USA, May 13–17, 2018 p431

    [8]

    Yao K, Yano H, Iwamuro N 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD) June 2–5, 2021 p115

    [9]

    Wei J X, Liu S Y, Zhao H B, Fu H, Zhang X B, Li S Y, Sun W F 2021 IEEE Trans. Emerg. Sel. Topics Power Electron. 9 2190Google Scholar

    [10]

    Li X, Tong X, Hu R, Wen Y, Zhu H, Deng X C, Sun Y K, Chen WJ, Bai S, Zhang B 2021 IEEE Trans. Emerg. Sel. Topics Power Electron. 9 2147Google Scholar

    [11]

    Hatakeyama T, Fukuda K, Okumura H, 2013 IEEE T. on Electron Dev. 60 613Google Scholar

    [12]

    https://fscdn.rohm.com/en/products/databook/datasheet/discrete/sic/mosfet/sct3080kr-e.pdf

  • [1] 朱文璐, 郭红霞, 李洋帆, 马武英, 张凤祁, 白如雪, 钟向丽, 李济芳, 曹彦辉, 琚安安. 双沟槽SiC MOSFET总剂量效应研究. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241641
    [2] 李洋帆, 郭红霞, 张鸿, 白如雪, 张凤祁, 马武英, 钟向丽, 李济芳, 卢小杰. 双沟槽SiC 金属-氧化物-半导体型场效应管重离子单粒子效应. 物理学报, 2024, 73(2): 026103. doi: 10.7498/aps.73.20231440
    [3] 李传纲, 鞠涛, 张立国, 李杨, 张璇, 秦娟, 张宝顺, 张泽洪. Ti, N共掺杂4H-SiC复合增强缓冲层生长及其对PiN二极管正向性能稳定性的改善. 物理学报, 2021, 70(3): 037102. doi: 10.7498/aps.70.20200921
    [4] 徐大林, 王玉琦, 李新化, 史同飞. 电荷耦合效应对高耐压沟槽栅极超势垒整流器击穿电压的影响. 物理学报, 2021, 70(6): 067301. doi: 10.7498/aps.70.20201558
    [5] 江逸洵, 乔明, 高文明, 何小东, 冯骏波, 张森, 张波. 一种基于BSIM4的屏蔽栅沟槽MOSFET紧凑型模型. 物理学报, 2020, 69(17): 177103. doi: 10.7498/aps.69.20200359
    [6] 李源, 石爱红, 陈国玉, 顾秉栋. 基于蒙特卡罗方法的4H-SiC(0001)面聚并台阶形貌演化机理. 物理学报, 2019, 68(7): 078101. doi: 10.7498/aps.68.20182067
    [7] 周斌, 黄云, 恩云飞, 付志伟, 陈思, 姚若河. 热-电应力下Cu/Ni/SnAg1.8/Cu倒装铜柱凸点界面行为及失效机理. 物理学报, 2018, 67(2): 028101. doi: 10.7498/aps.67.20171950
    [8] 骆扬, 王亚楠. 物理型硬件木马失效机理及检测方法. 物理学报, 2016, 65(11): 110602. doi: 10.7498/aps.65.110602
    [9] 贾仁需, 刘思成, 许翰迪, 陈峥涛, 汤晓燕, 杨霏, 钮应喜. 4H-SiC同质外延生长Grove模型研究. 物理学报, 2014, 63(3): 037102. doi: 10.7498/aps.63.037102
    [10] 宋坤, 柴常春, 杨银堂, 张现军, 陈斌. 栅漏间表面外延层对4H-SiC功率MESFET击穿特性的改善机理与结构优化. 物理学报, 2012, 61(2): 027202. doi: 10.7498/aps.61.027202
    [11] 林晓玲, 肖庆中, 恩云飞, 姚若河. 倒装芯片塑料球栅阵列封装器件在外应力下的失效机理. 物理学报, 2012, 61(12): 128502. doi: 10.7498/aps.61.128502
    [12] 张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮. PZT 95/5陶瓷电致失效机理研究. 物理学报, 2011, 60(5): 057701. doi: 10.7498/aps.60.057701
    [13] 薛正群, 黄生荣, 张保平, 陈朝. GaN基白光发光二极管失效机理分析. 物理学报, 2010, 59(7): 5002-5009. doi: 10.7498/aps.59.5002
    [14] 贾仁需, 张义门, 张玉明, 王悦湖. N型4H-SiC同质外延生长. 物理学报, 2008, 57(10): 6649-6653. doi: 10.7498/aps.57.6649
    [15] 马晓华, 郝 跃, 陈海峰, 曹艳荣, 周鹏举. 电压应力下超薄栅氧化层n-MOSFET的击穿特性. 物理学报, 2006, 55(11): 6118-6122. doi: 10.7498/aps.55.6118
    [16] 王彦刚, 许铭真, 谭长华, 段小蓉. 超薄栅氧化层n-MOSFET软击穿后的导电机制. 物理学报, 2005, 54(8): 3884-3888. doi: 10.7498/aps.54.3884
    [17] 徐静平, 李春霞, 吴海平. 4H-SiC n-MOSFET的高温特性分析. 物理学报, 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [18] 林洪峰, 谢二庆, 马紫微, 张 军, 彭爱华, 贺德衍. 射频溅射法制备3C-SiC和4H-SiC薄膜. 物理学报, 2004, 53(8): 2780-2785. doi: 10.7498/aps.53.2780
    [19] 吕红亮, 张义门, 张玉明. 4H-SiC pn结型二极管击穿特性中隧穿效应影响的模拟研究. 物理学报, 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
    [20] 徐昌发, 杨银堂, 刘莉. 4H-SiC MOSFET的温度特性研究. 物理学报, 2002, 51(5): 1113-1117. doi: 10.7498/aps.51.1113
计量
  • 文章访问数:  6712
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 修回日期:  2022-02-17
  • 上网日期:  2022-06-24
  • 刊出日期:  2022-07-05

/

返回文章
返回