搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用脉冲延迟实现微波波导中量子态存储与异地按需读取

朱道泉 项玉 孙风潇 何琼毅

引用本文:
Citation:

利用脉冲延迟实现微波波导中量子态存储与异地按需读取

朱道泉, 项玉, 孙风潇, 何琼毅

High-fidelity storage and on-demand retrieval of quantum states via a microwave waveguide

Zhu Dao-Quan, Xiang Yu, Sun Feng-Xiao, He Qiong-Yi
PDF
HTML
导出引用
  • 量子存储是实现长距离量子通信的关键步骤, 也是量子信息处理的重要基础. 在满足存储时间长、保真度高的基础上, 实现量子态的异地按需读取对构建实用化量子网络有着重要意义. 本文基于受激拉曼绝热路径(stimulated Raman adiabatic passage, STIRAP)的方法, 提出了通过设计可控脉冲延迟在一维微波波导中实现高保真度的量子态存储与异地按需读取的理论方案. 该方案不仅可以根据需求在异地决定读出时间, 且可以降低原始STIRAP方案所需的脉冲面积, 降低能量消耗. 数值计算的结果表明, 该方案实现的保真度对波导中的平均热光子数及读出脉冲的持续时间均有较强的鲁棒性.
    On-demand quantum memory is an important step towards practical applications in various quantum information tasks such as long-distance entanglement distribution, quantum computation, and quantum networks. In this work, based on stimulated Raman adiabatic passage (STIRAP) protocol, we introduce a controllable delay between the reading pulse and writing pulse so that the quantum state can be stored in the superconducting waveguide and finally retrieved on demand with high fidelity. Through systematic numerical simulations, we find that if the duration of the writing pulse is set to be in a certain range, the readout unit is capable of retrieving the quantum state stored in the waveguide with high fidelity at any moment after a critical time. Moreover, we also investigate the robustness of our protocol, and find that the fidelity is robust against both the average number of thermal photons in the waveguide and the duration of the reading pulse. The numerical results also show that the pulse area in our protocol is only about one third of that in the original STIRAP protocol. Our protocol provides a practical way to combine the advantages of both on-demand quantum memory and the STIRAP protocol.
      通信作者: 孙风潇, sunfengxiao@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12147148)和北京市自然科学基金(批准号: Z190005)资助的课题.
      Corresponding author: Sun Feng-Xiao, sunfengxiao@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12147148) and the Natural Science Foundation of Beijing, China (Grant No.Z190005).
    [1]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [2]

    Sun C P, Li Y, Liu X F 2003 Phys. Rev. Lett. 91 147903Google Scholar

    [3]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photon. 3 706Google Scholar

    [4]

    Hua Y L, Zhou Z Q, Li C F, Guo G C 2018 Chin. Phys. B 27 020303Google Scholar

    [5]

    窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏 2019 物理学报 68 030307Google Scholar

    Dou J P, Li H, Pang X L, Zhang C N, Yang T H, Jin X 2019 Acta Phys. Sin. 68 030307Google Scholar

    [6]

    Gisin N, Thew R 2007 Nat. Photon. 1 165Google Scholar

    [7]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [8]

    Humphreys P C, Kolthammer W S, Nunn J, Barbieri M, Datta A, Walmsley I A 2014 Phys. Rev. Lett. 113 130502Google Scholar

    [9]

    周宗权 2022 物理学报 71 070301Google Scholar

    Zhou Z Q 2022 Acta Phys. Sin. 71 070301Google Scholar

    [10]

    Gouzien É, Sangouard N 2021 Phys. Rev. Lett. 127 140503Google Scholar

    [11]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [12]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95Google Scholar

    [13]

    Simon C 2017 Nat. Photon. 11 678Google Scholar

    [14]

    Nickerson N H, Fitzsimons J F, Benjamin S C 2014 Phys. Rev. X 4 041041Google Scholar

    [15]

    Brecht T, Pfaff W, Wang C, Chu Y, Frunzio L, Devoret M H, Schoelkopf R J 2016 npj Quantum Inf. 2 16002Google Scholar

    [16]

    Magnard P, Storz S, Kurpiers P, Schär J, Marxer F, Lütolf J, Walter T, Besse J C, Gabureac M, Reuer K, Akin A, Royer B, Blais A, Wallraff A 2020 Phys. Rev. Lett. 125 260502Google Scholar

    [17]

    Xiang Z L, Zhang M Z, Jiang L, Rabl P 2017 Phys. Rev. X 7 011035Google Scholar

    [18]

    Vermersch B, Guimond P O, Pichler H, Zoller P 2017 Phys. Rev. Lett. 118 133601Google Scholar

    [19]

    Axline C J, Burkhart L D, Pfaff W, Zhang M Z, Chou K, Campagne-Ibarcq P, Reinhold P, Frunzio L, Girvin S, Jiang L, Devoret M H, Schoelkopf R J 2018 Nat. Phys. 14 705Google Scholar

    [20]

    Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, Pan J W 2019 Nat. Photon. 13 210Google Scholar

    [21]

    Afzelius M, Simon C, De Riedmatten H, Gisin N 2009 Phys. Rev. A 79 052329Google Scholar

    [22]

    Jobez P, Laplane C, Timoney N, Gisin N, Ferrier A, Goldner P, Afzelius M 2015 Phys. Rev. Lett. 114 230502Google Scholar

    [23]

    Gündoğan M, Ledingham P M, Kutluer K, Mazzera M, De Riedmatten H 2015 Phys. Rev. Lett. 114 230501Google Scholar

    [24]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Miyazono E, Bettinelli M, Cavalli E, Verma V, Nam S W, Marsili F, Shaw M D, Beyer A D, Faraon A 2017 Science 357 1392Google Scholar

    [25]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y C, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar

    [26]

    Bao Z H, Wang Z L, Wu Y K, Li Y, Ma C, Song Y P, Zhang H Y, Duan L M 2021 Phys. Rev. Lett. 127 010503Google Scholar

    [27]

    Liu C, Zhu T X, Su M X, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 260504Google Scholar

    [28]

    Pang X L, Yang A L, Dou J P, Li H, Zhang C N, Poem E, Saunders D J, Tang H, Nunn J, Walmsley I A, Jin X M 2020 Sci. Adv. 6 eaax1425Google Scholar

    [29]

    Rakonjac J V, Lago-Rivera D, Seri A, Mazzera M, Grandi S, De Riedmatten H 2021 Phys. Rev. Lett. 127 210502Google Scholar

    [30]

    Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190Google Scholar

    [31]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Pan J S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2014 Phys. Rev. A 90 042301Google Scholar

    [32]

    Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photon. 13 346Google Scholar

    [33]

    Guo J X, Feng X T, Yang P Y, Yu Z F, Chen L Q, Yuan C H, Zhang W P 2019 Nat. Commun. 10 148Google Scholar

    [34]

    Chen B, Qiu C, Chen S, Guo J, Chen L Q, Ou Z Y, Zhang W P 2015 Phys. Rev. Lett. 115 043602Google Scholar

    [35]

    Rui J, Jiang Y, Yang S J, Zhao B, Bao X H, Pan J W 2015 Phys. Rev. Lett. 115 133002Google Scholar

    [36]

    邓瑞婕, 闫智辉, 贾晓军 2017 物理学报 66 074201Google Scholar

    Deng R J, Yan Z H, Jia X J 2017 Acta Phys. Sin. 66 074201Google Scholar

    [37]

    Jia X J, Yan Z H, Duan Z Y, Su X L, Wang H, Xie C D, Peng K C 2012 Phys. Rev. Lett. 109 253604Google Scholar

    [38]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [39]

    Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505Google Scholar

    [40]

    Bouillard M, Boucher G, Ortas J F, Pointard B, Tualle-Brouri R 2019 Phys. Rev. Lett. 122 210501Google Scholar

    [41]

    Yoshikawa J, Makino K, Kurata S, Van Loock P, Furusawa A 2013 Phys. Rev. X 3 041028Google Scholar

    [42]

    Hashimoto Y, Toyama T, Yoshikawa J, Makino K, Okamoto F, Sakakibara R, Takeda S, Van Loock P, Furusawa A 2019 Phys. Rev. Lett. 123 113603Google Scholar

    [43]

    Sillanpää, M A, Park J I, Simmonds R W 2007 Nature 449 438Google Scholar

    [44]

    Pfaff W, Axline C J, Burkhart L D, Vool U, Reinhold P, Frunzio L, Jiang L, Devoret M H, Schoelkopf R J 2017 Nat. Phys. 13 882Google Scholar

    [45]

    Zhong M J, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [46]

    Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D L, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Commun. 6 8652Google Scholar

    [47]

    Lee K C, Sprague M R, Sussman B J, Nunn J, Langford N K, Jin X M, Champion T, Michelberger P, Reim K F, England D, Jaksch D, Walmsley I A 2011 Science 334 1253Google Scholar

    [48]

    Bradley C E, Randall J, Abobeih M H, Berrevoets R C, Degen M J, Bakker M A, Markham M, Twitchen D J, Taminiau T H 2019 Phys. Rev. X 9 031045Google Scholar

    [49]

    Sun S, Kim H, Luo Z C, Solomon G S, Waks E 2018 Science 361 57Google Scholar

    [50]

    England D G, Fisher K A G, MacLean J W, Bustard P J, Lausten R, Resch K J, Sussman B J 2015 Phys. Rev. Lett. 114 053602Google Scholar

    [51]

    Kutluer K, Distante E, Casabone B, Duranti S, Mazzera M, De Riedmatten H 2019 Phys. Rev. Lett. 123 030501Google Scholar

    [52]

    Heller L, Farrera P, Heinze G, De Riedmatten H 2020 Phys. Rev. Lett. 124 210504Google Scholar

    [53]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [54]

    Vitanov N V, Rangelov A A, Shore B W, Bergmann K 2017 Rev. Mod. Phys. 89 015006Google Scholar

    [55]

    Fedoseev V, Luna F, Hedgepeth I, Löffler W, Bouwmeester D 2021 Phys. Rev. Lett. 126 113601Google Scholar

    [56]

    Kandel Y P, Qiao H F, Fallahi S, Gardner G C, Manfra M J, Nichol J M 2019 Nature 573 553Google Scholar

    [57]

    Vool U, Devoret M 2017 Int. J. Circuit Theory Appl. 45 897Google Scholar

    [58]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005Google Scholar

    [59]

    Jeong H, Ralph T, Bowen W 2007 J. Opt. Soc. Am. B 24 355Google Scholar

    [60]

    Reagor M, Paika H, Catelanib G, Sun L Y, Axline C, Holland E, Pop I M, Maslukc N A, Brecht T, Frunzio L, Devoret M H, Glazman L, Schoelkopfd R J 2013 Appl. Phys. Lett. 102 192604Google Scholar

  • 图 1  量子态存储与异地读取方案图. $ {E_{\text{C}}} $, $ {E_{\text{L}}} $分别代表两端读写腔的电容充电能和电感能量. $ {E_{{\text{C, B}}}} $$ {E_{{\text{L, B}}}} $为波导中每个单元的电容充电能和电感能量

    Fig. 1.  Setup for quantum state storage and remote retrieval. $ {E_{\text{C}}} $, $ {E_{\text{L}}} $ are the capacitive and inductive energies of both writing and reading cavities, respectively. $ {E_{{\text{C, B}}}} $ and $ {E_{{\text{L, B}}}} $ are the capacitive and inductive energies for the unit cell within the waveguide.

    图 2  读出量子态与写入量子态之间的保真度随着读写脉冲持续时间$ T $、读出脉冲延迟$ \Delta T $的变化关系图. 这里的读出脉冲与写入脉冲最大强度均为$ A = 0.1\omega $. 图中所有的时间、频率都以读写腔的频率$ \omega $为参考进行无量纲化. 当脉冲写入时间满足$ 100/\omega \lesssim T \lesssim 200/\omega $时, 读出脉冲可以在临界时间$ {T_{\text{C}}} $之后的任意时刻对量子态进行高保真读取

    Fig. 2.  The fidelity of the scheme as a function of the duration of the pulse $ T $ and the delay of the reading pulse $ \Delta T $. The amplitudes of both the writing and reading pulse are$ A = 0.1\omega $. Each frequency and time scale in this figure are normalized by the bare frequency $ \omega $ of the writing/reading cavities. One can notice that once the duration of the writing pulse satisfies the condition $ 100/\omega \lesssim T \lesssim 200/\omega $, high-fidelity quantum state retrieval is possible after the critical time $ {T_{\text{C}}} $.

    图 3  量子态的存储与读取结果展示 (a)和(b)分别为写入量子态与读出量子态的Wigner准概率分布; (c)所需写入脉冲与读出脉冲的波形以及量子态的读取保真度. 参数取值分别为: $ T = 150/\omega $, $ \Delta T = 400/\omega $, $ A = 0.1\omega $

    Fig. 3.  Numerical results for the storage and the retrieval of a quantum state in a waveguide: (a) and (b) are Wigner distributions of the initial state and the final state, respectively; (c) shows the pulses of our protocol used for storing and retrieving the quantum state. The related parameters are $ T = 150/\omega $, $ \Delta T = 400/\omega $, $ A = 0.1\omega $.

    图 4  量子态保真度的鲁棒性. 将写入腔的初态制备在1个压缩态$ \left| {\left. {\psi (0)} \right\rangle = } \right.\left| {\left. {\alpha , r} \right\rangle } \right. $, 其中$ \alpha = \sqrt 2 $, $ r = 0.5 $. (a)和(b)分别展示了保真度对微波腔中平均热光子数, 以及对读出脉冲持续时间的鲁棒性. 参数取值分别为: 写入脉冲持续时间$ T = 150/\omega $, 读出脉冲延迟$ \Delta T = 400/\omega $, 脉冲的最大幅值$ A = 0.1\omega $

    Fig. 4.  Robustness of the fidelity for the retrieval of the quantum state. The initial state in the writing cavity is prepared to be a squeezed coherent state $ \left| {\left. {\psi (0)} \right\rangle = } \right.\left| {\left. {\alpha , r} \right\rangle } \right. $ with $ \alpha = \sqrt 2 $ and $ r = 0.5 $. (a) and (b) show the robustness of the fidelity against the average number of thermal photons inside the waveguide and the duration of the reading pulse, respectively. Here we fix the duration of the writing pulse $ T = 150/\omega $, the delay of the reading pulse $ \Delta T = 400/\omega $ and the maximum amplitude for both pulses $ A = 0.1\omega $.

  • [1]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [2]

    Sun C P, Li Y, Liu X F 2003 Phys. Rev. Lett. 91 147903Google Scholar

    [3]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photon. 3 706Google Scholar

    [4]

    Hua Y L, Zhou Z Q, Li C F, Guo G C 2018 Chin. Phys. B 27 020303Google Scholar

    [5]

    窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏 2019 物理学报 68 030307Google Scholar

    Dou J P, Li H, Pang X L, Zhang C N, Yang T H, Jin X 2019 Acta Phys. Sin. 68 030307Google Scholar

    [6]

    Gisin N, Thew R 2007 Nat. Photon. 1 165Google Scholar

    [7]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [8]

    Humphreys P C, Kolthammer W S, Nunn J, Barbieri M, Datta A, Walmsley I A 2014 Phys. Rev. Lett. 113 130502Google Scholar

    [9]

    周宗权 2022 物理学报 71 070301Google Scholar

    Zhou Z Q 2022 Acta Phys. Sin. 71 070301Google Scholar

    [10]

    Gouzien É, Sangouard N 2021 Phys. Rev. Lett. 127 140503Google Scholar

    [11]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [12]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95Google Scholar

    [13]

    Simon C 2017 Nat. Photon. 11 678Google Scholar

    [14]

    Nickerson N H, Fitzsimons J F, Benjamin S C 2014 Phys. Rev. X 4 041041Google Scholar

    [15]

    Brecht T, Pfaff W, Wang C, Chu Y, Frunzio L, Devoret M H, Schoelkopf R J 2016 npj Quantum Inf. 2 16002Google Scholar

    [16]

    Magnard P, Storz S, Kurpiers P, Schär J, Marxer F, Lütolf J, Walter T, Besse J C, Gabureac M, Reuer K, Akin A, Royer B, Blais A, Wallraff A 2020 Phys. Rev. Lett. 125 260502Google Scholar

    [17]

    Xiang Z L, Zhang M Z, Jiang L, Rabl P 2017 Phys. Rev. X 7 011035Google Scholar

    [18]

    Vermersch B, Guimond P O, Pichler H, Zoller P 2017 Phys. Rev. Lett. 118 133601Google Scholar

    [19]

    Axline C J, Burkhart L D, Pfaff W, Zhang M Z, Chou K, Campagne-Ibarcq P, Reinhold P, Frunzio L, Girvin S, Jiang L, Devoret M H, Schoelkopf R J 2018 Nat. Phys. 14 705Google Scholar

    [20]

    Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, Pan J W 2019 Nat. Photon. 13 210Google Scholar

    [21]

    Afzelius M, Simon C, De Riedmatten H, Gisin N 2009 Phys. Rev. A 79 052329Google Scholar

    [22]

    Jobez P, Laplane C, Timoney N, Gisin N, Ferrier A, Goldner P, Afzelius M 2015 Phys. Rev. Lett. 114 230502Google Scholar

    [23]

    Gündoğan M, Ledingham P M, Kutluer K, Mazzera M, De Riedmatten H 2015 Phys. Rev. Lett. 114 230501Google Scholar

    [24]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Miyazono E, Bettinelli M, Cavalli E, Verma V, Nam S W, Marsili F, Shaw M D, Beyer A D, Faraon A 2017 Science 357 1392Google Scholar

    [25]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y C, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar

    [26]

    Bao Z H, Wang Z L, Wu Y K, Li Y, Ma C, Song Y P, Zhang H Y, Duan L M 2021 Phys. Rev. Lett. 127 010503Google Scholar

    [27]

    Liu C, Zhu T X, Su M X, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 260504Google Scholar

    [28]

    Pang X L, Yang A L, Dou J P, Li H, Zhang C N, Poem E, Saunders D J, Tang H, Nunn J, Walmsley I A, Jin X M 2020 Sci. Adv. 6 eaax1425Google Scholar

    [29]

    Rakonjac J V, Lago-Rivera D, Seri A, Mazzera M, Grandi S, De Riedmatten H 2021 Phys. Rev. Lett. 127 210502Google Scholar

    [30]

    Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190Google Scholar

    [31]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Pan J S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2014 Phys. Rev. A 90 042301Google Scholar

    [32]

    Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photon. 13 346Google Scholar

    [33]

    Guo J X, Feng X T, Yang P Y, Yu Z F, Chen L Q, Yuan C H, Zhang W P 2019 Nat. Commun. 10 148Google Scholar

    [34]

    Chen B, Qiu C, Chen S, Guo J, Chen L Q, Ou Z Y, Zhang W P 2015 Phys. Rev. Lett. 115 043602Google Scholar

    [35]

    Rui J, Jiang Y, Yang S J, Zhao B, Bao X H, Pan J W 2015 Phys. Rev. Lett. 115 133002Google Scholar

    [36]

    邓瑞婕, 闫智辉, 贾晓军 2017 物理学报 66 074201Google Scholar

    Deng R J, Yan Z H, Jia X J 2017 Acta Phys. Sin. 66 074201Google Scholar

    [37]

    Jia X J, Yan Z H, Duan Z Y, Su X L, Wang H, Xie C D, Peng K C 2012 Phys. Rev. Lett. 109 253604Google Scholar

    [38]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [39]

    Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505Google Scholar

    [40]

    Bouillard M, Boucher G, Ortas J F, Pointard B, Tualle-Brouri R 2019 Phys. Rev. Lett. 122 210501Google Scholar

    [41]

    Yoshikawa J, Makino K, Kurata S, Van Loock P, Furusawa A 2013 Phys. Rev. X 3 041028Google Scholar

    [42]

    Hashimoto Y, Toyama T, Yoshikawa J, Makino K, Okamoto F, Sakakibara R, Takeda S, Van Loock P, Furusawa A 2019 Phys. Rev. Lett. 123 113603Google Scholar

    [43]

    Sillanpää, M A, Park J I, Simmonds R W 2007 Nature 449 438Google Scholar

    [44]

    Pfaff W, Axline C J, Burkhart L D, Vool U, Reinhold P, Frunzio L, Jiang L, Devoret M H, Schoelkopf R J 2017 Nat. Phys. 13 882Google Scholar

    [45]

    Zhong M J, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [46]

    Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D L, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Commun. 6 8652Google Scholar

    [47]

    Lee K C, Sprague M R, Sussman B J, Nunn J, Langford N K, Jin X M, Champion T, Michelberger P, Reim K F, England D, Jaksch D, Walmsley I A 2011 Science 334 1253Google Scholar

    [48]

    Bradley C E, Randall J, Abobeih M H, Berrevoets R C, Degen M J, Bakker M A, Markham M, Twitchen D J, Taminiau T H 2019 Phys. Rev. X 9 031045Google Scholar

    [49]

    Sun S, Kim H, Luo Z C, Solomon G S, Waks E 2018 Science 361 57Google Scholar

    [50]

    England D G, Fisher K A G, MacLean J W, Bustard P J, Lausten R, Resch K J, Sussman B J 2015 Phys. Rev. Lett. 114 053602Google Scholar

    [51]

    Kutluer K, Distante E, Casabone B, Duranti S, Mazzera M, De Riedmatten H 2019 Phys. Rev. Lett. 123 030501Google Scholar

    [52]

    Heller L, Farrera P, Heinze G, De Riedmatten H 2020 Phys. Rev. Lett. 124 210504Google Scholar

    [53]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [54]

    Vitanov N V, Rangelov A A, Shore B W, Bergmann K 2017 Rev. Mod. Phys. 89 015006Google Scholar

    [55]

    Fedoseev V, Luna F, Hedgepeth I, Löffler W, Bouwmeester D 2021 Phys. Rev. Lett. 126 113601Google Scholar

    [56]

    Kandel Y P, Qiao H F, Fallahi S, Gardner G C, Manfra M J, Nichol J M 2019 Nature 573 553Google Scholar

    [57]

    Vool U, Devoret M 2017 Int. J. Circuit Theory Appl. 45 897Google Scholar

    [58]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005Google Scholar

    [59]

    Jeong H, Ralph T, Bowen W 2007 J. Opt. Soc. Am. B 24 355Google Scholar

    [60]

    Reagor M, Paika H, Catelanib G, Sun L Y, Axline C, Holland E, Pop I M, Maslukc N A, Brecht T, Frunzio L, Devoret M H, Glazman L, Schoelkopfd R J 2013 Appl. Phys. Lett. 102 192604Google Scholar

  • [1] 曾嘉乐, 练昌旺, 季雨, 闫锐. 间接驱动相关条件下的大空间尺度对流受激拉曼侧向散射. 物理学报, 2024, 73(10): 105202. doi: 10.7498/aps.73.20240045
    [2] 宋寒冰, 郎鹏, 季博宇, 徐洋, 宋晓伟, 林景全. 利用啁啾飞秒激光脉冲调控金薄膜中传输表面等离激元的群延迟色散. 物理学报, 2024, 73(17): 177102. doi: 10.7498/aps.73.20240973
    [3] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制. 物理学报, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [4] 刘金品, 王秉中, 陈传升, 王任. 基于深度物理启发神经网络的微波波导器件逆设计方法. 物理学报, 2023, 72(8): 080201. doi: 10.7498/aps.72.20230031
    [5] 丁晨, 李坦, 张硕, 郭楚, 黄合良, 鲍皖苏. 基于辅助单比特测量的量子态读取算法. 物理学报, 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [6] 王子钰, 魏景乐, 徐文琪, 姜甲明, 黄逸凡, 刘伟民. 利用飞秒受激拉曼光谱技术研究Pyranine分子激发态质子传递过程. 物理学报, 2020, 69(19): 198201. doi: 10.7498/aps.69.20200230
    [7] 李晓克, 冯伟. 非绝热分子动力学的量子路径模拟. 物理学报, 2017, 66(15): 153101. doi: 10.7498/aps.66.153101
    [8] 张磊, 李金增. 水中受激布里渊散射脉冲的反常压缩. 物理学报, 2014, 63(5): 054202. doi: 10.7498/aps.63.054202
    [9] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [10] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究. 物理学报, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [11] 刘凌宇, 田慧平, 纪越峰. 光子晶体波导中的孤子传输及其延迟特性研究. 物理学报, 2011, 60(10): 104216. doi: 10.7498/aps.60.104216
    [12] 孟少英, 吴炜. 原子-二聚物分子转化系统在受激拉曼绝热过程中的绝热保真度. 物理学报, 2009, 58(8): 5311-5317. doi: 10.7498/aps.58.5311
    [13] 鲁翠萍, 袁春华, 张卫平. 受激拉曼增益介质中的量子噪声特性研究. 物理学报, 2008, 57(11): 6976-6981. doi: 10.7498/aps.57.6976
    [14] 哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李 强, 何伟明. 受激布里渊散射光脉冲波形的研究. 物理学报, 2007, 56(2): 878-882. doi: 10.7498/aps.56.878
    [15] 韩 琳, 宋 峰, 万从尚, 邹昌光, 闫立华, 张 康, 田建国. 自受激拉曼晶体Nd3+:SrMoO4的光谱性质研究. 物理学报, 2007, 56(3): 1751-1757. doi: 10.7498/aps.56.1751
    [16] 喻远琴, 周晓国, 林 柯, 戴静华, 刘世林, 马兴孝. CH4分子ν1模拉曼诱导克尔效应谱与受激拉曼光声光谱峰形的比较. 物理学报, 2006, 55(6): 2740-2745. doi: 10.7498/aps.55.2740
    [17] 丁迎春, 吕志伟, 何伟明. 受激布里渊放大光脉冲波形的研究. 物理学报, 2003, 52(9): 2165-2169. doi: 10.7498/aps.52.2165
    [18] 嵇英华. 脉冲信号对介观RLC电路量子态的影响. 物理学报, 2003, 52(3): 692-695. doi: 10.7498/aps.52.692
    [19] 张肇源, 曲林杰, 刘承惠, 霍崇儒. 超短光脉冲的单延迟三次相关测试. 物理学报, 1982, 31(2): 213-219. doi: 10.7498/aps.31.213
    [20] 吴志元. 圆电波波导中的导电圆环耦合. 物理学报, 1965, 21(1): 223-226. doi: 10.7498/aps.21.223
计量
  • 文章访问数:  3869
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-17
  • 修回日期:  2022-03-23
  • 上网日期:  2022-06-27
  • 刊出日期:  2022-07-05

/

返回文章
返回