搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正丙醇、正丁醇和正辛醇中Debye弛豫动力学的测量与分析

王丽娜 赵兴宇 尚洁莹 周恒为

引用本文:
Citation:

正丙醇、正丁醇和正辛醇中Debye弛豫动力学的测量与分析

王丽娜, 赵兴宇, 尚洁莹, 周恒为

Measurement and analysis of Debye relaxation dynamics of n-propanol, n-butanol and n-octanol

Wang Li-Na, Zhao Xing-Yu, Shang Jie-Ying, Zhou Heng-Wei
PDF
HTML
导出引用
  • 单羟基醇具有其他液体通常所不具备的Debye弛豫过程, 随着研究工作的开展, 一些与之相关的新现象和新问题也逐渐被发现, 深化了对物质结构和动力学的认知. 为了进一步研究Debye弛豫过程的动力学及其受分子构成影响的情况, 本文通过介电谱方法对3种无支链无侧基伯醇中的Debye弛豫进行测量与分析, 揭示了该过程的一些变化规律. 在正丙醇、正丁醇和正辛醇这3种伯醇中Debye过程的特征温度、Vogel-Fulcher-Tammann (VFT)温度的倒数和强度参量以及弛豫单元在高温极限下的激活能和固有振动频率的对数几乎都随分子内碳原子数的增加而线性增加. 但是VFT温度变化不大, 具有一致性, 表明这3种单羟基醇中Debye过程的弛豫单元应该相同, 进一步验证了Debye弛豫来源于氢键分子链中羟基的观点. 将样品的沸点和熔点等信息与上述激活能的变化进行对比, 表明氢键作用与分子之间的整体相互作用具有正相关性. 另外, 将强度参量的变化情况与相关理论进行结合, 给出了研究液体脆性的一个可能视角; 三者弛豫过程与乙醇结果的对比, 显示出Debye弛豫与α弛豫的分离程度会受到分子链长的影响, 也为Debye弛豫的研究提供了切入点. 这些结果将为单羟基醇Debye弛豫的进一步理解与研究产生促进作用, 也为相关理论提供检验性的实验信息.
    Monohydroxy alcohol has a Debye relaxation process that other liquids usually do not have, and with the further research, some new phenomena and new problems related to the process have been gradually discovered, deepening the understanding of material structure and dynamics. In order to further investigate the dynamics of Debye relaxation processes and the influence of molecular constitutions on them, the Debye processes of three primary alcohols without branched chains or side groups are studied by dielectric spectroscopy method, and some important information about the processes is revealed. A number of dynamic parameters of Debye relaxation in n-propanol, n-butanol and n-octanol almost all increase linearly with the rising of the number of carbon atoms in the molecules, which include the characteristic temperature, the reciprocal of Vogel-Fulcher-Tammann (VFT) temperature, the strength parameter of Debye process, the activation energy and the logarithm of the intrinsic vibration frequency of relaxation units under high temperature limit. However, the values of VFT temperatures change little and have consistency, illustrating that the relaxation units of Debye processes in these three monohydroxy alcohols should be the same, further verifying the view that the Debye relaxation originates from the hydroxyl groups in hydrogen bonded molecular chains. Comparing Boiling temperatures and melting temperatures of those samples with the evolution of the above activation energy, it is shown that there is a positive correlation between the interaction among hydrogen bonds and the whole one among molecules. In addition, combining the information about the strength parameter with that from the relevant theories, a possible perspective is gained for further investigation of liquid fragility. The comparison of those three samples with ethanol displays that the degree of separation of Debye relaxation and α relaxation is influenced by the molecular chain length, which can provide a breakthrough point to explore Debye relaxation. These results in this work will promote the further understanding and research of Debye relaxation in monohydroxy alcohols, and also provide experimental information for relevant theories.
      通信作者: 赵兴宇, xyzphys@163.com
    • 基金项目: 新疆维吾尔自治区自然科学基金(批准号: 2021D01C464)和伊犁师范大学博士科研启动基金(批准号: 2022YSBS002)资助的课题.
      Corresponding author: Zhao Xing-Yu, xyzphys@163.com
    • Funds: Project supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2021D01C464) and the Doctoral Research Startup Foundation of Yili Normal University, China (Grant No. 2022YSBS002)
    [1]

    Böhmer R, Gainaru C, Richert R 2014 Phys. Rep. 545 125Google Scholar

    [2]

    Huth H, Wang L M, Schick C, Richert R 2007 J. Chem. Phys. 126 104503Google Scholar

    [3]

    Jakobsen B, Maggi C, Christensen T, Dyre J C 2008 J. Chem. Phys. 129 184502Google Scholar

    [4]

    Gainaru C, Kastner S, Mayr F, Lunkenheimer P, Schildmann S, Weber H J, Hiller W, Loidl A, Böhmer R 2011 Phys. Rev. Lett. 107 118304Google Scholar

    [5]

    Bauer S, Burlafinger K, Gainaru C, Lunkenheimer P, Hiller W, Loidl A, Böhmer R 2013 J. Chem. Phys. 138 94505Google Scholar

    [6]

    Wang L N, Zhao X Y, Huang Y N 2019 Int. J. Mod. Phys. B 33 1950313Google Scholar

    [7]

    Wang L N, Zhao X Y, Huang Y N 2019 Chin. Phys. Lett. 36 097701Google Scholar

    [8]

    Zhao X Y, Wang L N, He Y F, Zhou H W, Huang Y N 2020 Chem. Phys. 528 110473Google Scholar

    [9]

    Lu G H, Wang L N, Zhao X Y, He Y F, Huang Y N 2021 Int. J. Mod. Phys. B 35 2150014Google Scholar

    [10]

    Wang L M, Tian Y J, Liu R P, Richert R 2008 J. Chem. Phys. 128 084503Google Scholar

    [11]

    李艳伟, 孙昭艳, 安立佳 2016 大学化学 31 1Google Scholar

    Li Y W, Sun Z Y, An L J 2016 Univ. Chem. 31 1Google Scholar

    [12]

    Dyre J C 2006 Rev. Mod. Phys. 78 953Google Scholar

    [13]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S W 2000 J. Appl. Phys. 88 3113Google Scholar

    [14]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [15]

    Gainaru C, Meier R, Schildmann S, Lederle C, Hiller W, Rössler E A, Böhmer R 2010 Phys. Rev. Lett. 105 258303Google Scholar

    [16]

    Gao Y Q, Tu W K, Chen Z M, Tian Y J, Liu R P, Wang L M 2013 J. Chem. Phys. 139 164504Google Scholar

    [17]

    Zhao X Y, Wang L N, Yin H M, Zhou H W, Huang Y N 2019 Chin. Phys. B 28 086601Google Scholar

    [18]

    Xu D, Feng S D, Wang J Q, Wang L M, Richert R 2020 J. Phys. Chem. Lett. 11 5792Google Scholar

    [19]

    Havriliak S, Negami S 1967 Polymer 8 161Google Scholar

    [20]

    Richert R 2010 J. Chem. Phys. 133 74502Google Scholar

    [21]

    Wang J, Zhao K S, Wu L X 2014 J. Chem. Phys. 141 54502Google Scholar

    [22]

    Ishai P B, Talary M S, Caduff A, Levy E, Feldman Y 2013 Meas. Sci. Technol. 24 102001Google Scholar

    [23]

    Brand R, Lunkenheimer P, Loidl A 2002 J. Chem. Phys. 116 10386Google Scholar

    [24]

    Chua Y Z, Young-Gonzales A R, Richert R, Ediger M D, Schick C 2017 J. Chem. Phys. 147 014502Google Scholar

    [25]

    Scherer G W 1992 J. Am. Ceram. Soc. 75 1060Google Scholar

    [26]

    Vogel H 1921 Phys. Zeit. 22 645

    [27]

    Fulcher G S 1925 J. Am. Ceram. Soc. 8 339Google Scholar

    [28]

    Tammann G, Hesse W 1926 Z. Anorg. Allg. Chem. 156 245Google Scholar

    [29]

    Böhmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201Google Scholar

    [30]

    Huang Y N, Wang C J, Riande E 2005 J. Chem. Phys. 122 144502Google Scholar

    [31]

    赵兴宇, 王丽娜, 樊小辉, 张丽丽, 卫来, 张晋鲁, 黄以能 2011 物理学报 60 036403Google Scholar

    Zhao X Y, Wang L N, Fan X H, Zhang L L, Wei L, Zhang J-L, Huang Y N 2011 Acta Phys. Sin. 60 036403Google Scholar

    [32]

    Angell C A 1995 Science 267 1924Google Scholar

    [33]

    Lunkenheimer P, Schneider U, Brand R, Loidl A 2000 Contemp. Phys. 41 15Google Scholar

    [34]

    Tschamler H, Richter E, Wettig F 1949 Monatsh. Chem. 80 749Google Scholar

    [35]

    Wang L M, Richert R 2007 J. Phys. Chem. B 111 3201Google Scholar

  • 图 1  正丙醇的复介电常数

    Fig. 1.  Complex dielectric constant of n-propanol.

    图 2  正丁醇的复介电常数

    Fig. 2.  Complex dielectric constant of n-butanol.

    图 3  正辛醇的复介电常数

    Fig. 3.  Complex dielectric constant of n-octanol.

    图 4  正丙醇、正丁醇和正辛醇中Debye过程的弛豫时间$ \tau $

    Fig. 4.  Relaxation time $ \tau $ of Debye processes in n-propanol, n-butanol and n-octanol.

    图 5  正丙醇、正丁醇和正辛醇的$ A $, $ D $, $ {\nu }_{0} $$ {T}_{0} $$ n $的变化图

    Fig. 5.  Evolution of $ A $, $ D $, $ {\nu }_{0} $ and $ {T}_{0} $ vs. $ n $ in n-propanol, n-butanol and n-octanol.

    图 6  正丙醇、正丁醇和正辛醇的$ {T}_{100} $, 以及$ n $=3—8时的该类线性伯醇的$ {T}_{\rm{b}} $$ {T}_{\rm{m}} $

    Fig. 6.  $ {T}_{100} $ of n-propanol, n-butanol and n-octanol as well as $ {T}_{\rm{b}} $ and $ {T}_{\rm{m}} $ of such linear primary alcohol when $ n $ = 3–8.

    表 1  正丙醇、正丁醇和正辛醇的$ n $, $ A $, $ {\nu }_{0} $, $ {T}_{0} $, $ {T}_{100} $以及D

    Table 1.  Values of $ n $, $ A $, $ {\nu }_{0} $, $ {T}_{0} $, $ {T}_{100} $ and D in n-propanol, n-butanol and n-octanol.

    样品$ n $$ A $/K$ {\nu }_{0} $/Hz$ {T}_{0} $/K$ {T}_{100} $/K$ D $
    正丙醇314349.08$ \times $10115610125.6
    正丁醇418394.97$ \times $10125510933.4
    正辛醇834161.06$ \times $10155213765.7
    下载: 导出CSV
  • [1]

    Böhmer R, Gainaru C, Richert R 2014 Phys. Rep. 545 125Google Scholar

    [2]

    Huth H, Wang L M, Schick C, Richert R 2007 J. Chem. Phys. 126 104503Google Scholar

    [3]

    Jakobsen B, Maggi C, Christensen T, Dyre J C 2008 J. Chem. Phys. 129 184502Google Scholar

    [4]

    Gainaru C, Kastner S, Mayr F, Lunkenheimer P, Schildmann S, Weber H J, Hiller W, Loidl A, Böhmer R 2011 Phys. Rev. Lett. 107 118304Google Scholar

    [5]

    Bauer S, Burlafinger K, Gainaru C, Lunkenheimer P, Hiller W, Loidl A, Böhmer R 2013 J. Chem. Phys. 138 94505Google Scholar

    [6]

    Wang L N, Zhao X Y, Huang Y N 2019 Int. J. Mod. Phys. B 33 1950313Google Scholar

    [7]

    Wang L N, Zhao X Y, Huang Y N 2019 Chin. Phys. Lett. 36 097701Google Scholar

    [8]

    Zhao X Y, Wang L N, He Y F, Zhou H W, Huang Y N 2020 Chem. Phys. 528 110473Google Scholar

    [9]

    Lu G H, Wang L N, Zhao X Y, He Y F, Huang Y N 2021 Int. J. Mod. Phys. B 35 2150014Google Scholar

    [10]

    Wang L M, Tian Y J, Liu R P, Richert R 2008 J. Chem. Phys. 128 084503Google Scholar

    [11]

    李艳伟, 孙昭艳, 安立佳 2016 大学化学 31 1Google Scholar

    Li Y W, Sun Z Y, An L J 2016 Univ. Chem. 31 1Google Scholar

    [12]

    Dyre J C 2006 Rev. Mod. Phys. 78 953Google Scholar

    [13]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S W 2000 J. Appl. Phys. 88 3113Google Scholar

    [14]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [15]

    Gainaru C, Meier R, Schildmann S, Lederle C, Hiller W, Rössler E A, Böhmer R 2010 Phys. Rev. Lett. 105 258303Google Scholar

    [16]

    Gao Y Q, Tu W K, Chen Z M, Tian Y J, Liu R P, Wang L M 2013 J. Chem. Phys. 139 164504Google Scholar

    [17]

    Zhao X Y, Wang L N, Yin H M, Zhou H W, Huang Y N 2019 Chin. Phys. B 28 086601Google Scholar

    [18]

    Xu D, Feng S D, Wang J Q, Wang L M, Richert R 2020 J. Phys. Chem. Lett. 11 5792Google Scholar

    [19]

    Havriliak S, Negami S 1967 Polymer 8 161Google Scholar

    [20]

    Richert R 2010 J. Chem. Phys. 133 74502Google Scholar

    [21]

    Wang J, Zhao K S, Wu L X 2014 J. Chem. Phys. 141 54502Google Scholar

    [22]

    Ishai P B, Talary M S, Caduff A, Levy E, Feldman Y 2013 Meas. Sci. Technol. 24 102001Google Scholar

    [23]

    Brand R, Lunkenheimer P, Loidl A 2002 J. Chem. Phys. 116 10386Google Scholar

    [24]

    Chua Y Z, Young-Gonzales A R, Richert R, Ediger M D, Schick C 2017 J. Chem. Phys. 147 014502Google Scholar

    [25]

    Scherer G W 1992 J. Am. Ceram. Soc. 75 1060Google Scholar

    [26]

    Vogel H 1921 Phys. Zeit. 22 645

    [27]

    Fulcher G S 1925 J. Am. Ceram. Soc. 8 339Google Scholar

    [28]

    Tammann G, Hesse W 1926 Z. Anorg. Allg. Chem. 156 245Google Scholar

    [29]

    Böhmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201Google Scholar

    [30]

    Huang Y N, Wang C J, Riande E 2005 J. Chem. Phys. 122 144502Google Scholar

    [31]

    赵兴宇, 王丽娜, 樊小辉, 张丽丽, 卫来, 张晋鲁, 黄以能 2011 物理学报 60 036403Google Scholar

    Zhao X Y, Wang L N, Fan X H, Zhang L L, Wei L, Zhang J-L, Huang Y N 2011 Acta Phys. Sin. 60 036403Google Scholar

    [32]

    Angell C A 1995 Science 267 1924Google Scholar

    [33]

    Lunkenheimer P, Schneider U, Brand R, Loidl A 2000 Contemp. Phys. 41 15Google Scholar

    [34]

    Tschamler H, Richter E, Wettig F 1949 Monatsh. Chem. 80 749Google Scholar

    [35]

    Wang L M, Richert R 2007 J. Phys. Chem. B 111 3201Google Scholar

  • [1] 王志飞, 王路, 王菊, 刘秀茹. 聚苯硫醚熔体的压致凝固行为. 物理学报, 2020, 69(9): 096101. doi: 10.7498/aps.69.20191820
    [2] 姜文龙. 非晶聚苯乙烯和Pd40Ni10Cu30P20玻璃化转变中比热变化的机理和定量研究. 物理学报, 2020, 69(12): 126401. doi: 10.7498/aps.69.20200331
    [3] 林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛. 环氧树脂高温分子链松弛与玻璃化转变特性. 物理学报, 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [4] 陈威, 曹万强. 弛豫铁电体弥散相变的玻璃化特性研究. 物理学报, 2012, 61(9): 097701. doi: 10.7498/aps.61.097701
    [5] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [6] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷的介电谱. 物理学报, 2012, 61(18): 187302. doi: 10.7498/aps.61.187302
    [7] 卫来, 周兰兰, 鹿桂花, 张文, 张武智, 张尚, 冯永红, 周恒为, 张晋鲁, 黄以能. 邻苯二甲酸二甲酯系材料中-弛豫的降温介电谱测量与分析. 物理学报, 2012, 61(1): 017701. doi: 10.7498/aps.61.017701
    [8] 赵兴宇, 王丽娜, 樊小辉, 张丽丽, 卫来, 张晋鲁, 黄以能. 玻璃化转变的分子串模型中分子串弛豫模式的计算机模拟. 物理学报, 2011, 60(3): 036403. doi: 10.7498/aps.60.036403
    [9] 周学懋, 陈晓萌, 吴学邦, 水嘉鹏, 朱震刚. 聚甲基丙烯酸甲酯/镓纳米复合物的动力学弛豫行为. 物理学报, 2011, 60(3): 036102. doi: 10.7498/aps.60.036102
    [10] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [11] 成鹏飞, 李盛涛, 李建英. ZnO-Bi2O3系压敏陶瓷的晶界电子结构. 物理学报, 2010, 59(1): 560-565. doi: 10.7498/aps.59.560
    [12] 郭秀珍, 周恒为, 张丽丽, 吴文惠, 张晋鲁, 黄以能. 邻苯二甲酸二酯系玻璃材料中裂纹愈合效应研究. 物理学报, 2010, 59(1): 417-421. doi: 10.7498/aps.59.417
    [13] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷介电损耗的温度谱研究. 物理学报, 2009, 58(8): 5721-5725. doi: 10.7498/aps.58.5721
    [14] 李盛涛, 成鹏飞, 赵雷, 李建英. ZnO压敏陶瓷中缺陷的介电谱研究. 物理学报, 2009, 58(1): 523-528. doi: 10.7498/aps.58.523
    [15] 张丽丽, 张晋鲁, 蒋建国, 周恒为, 黄以能. 取向玻璃体系中分子之间取向关联的模型化及其模拟与分析. 物理学报, 2008, 57(9): 5817-5822. doi: 10.7498/aps.57.5817
    [16] 周恒为, 张晋鲁, 黄以能, 应学农, 张 亮, 吴文惠, 沈异凡. 邻苯二甲酸二甲酯系材料的液态簧振动力学谱测量. 物理学报, 2007, 56(11): 6547-6551. doi: 10.7498/aps.56.6547
    [17] 沈 韩, 许 华, 陈 敏, 李景德. 钇掺杂钨酸铅晶体中的极化子和导纳谱. 物理学报, 2003, 52(12): 3125-3129. doi: 10.7498/aps.52.3125
    [18] 程忠阳, 姚熹, 张良莹. 弛豫型铁电体铌镁酸铅陶瓷的玻璃化行为研究. 物理学报, 1996, 45(6): 1026-1032. doi: 10.7498/aps.45.1026
    [19] 李健, 张烨, 张声春. 非晶态聚合物主转变弛豫峰与玻璃化转变过程的相关性研究. 物理学报, 1996, 45(8): 1359-1365. doi: 10.7498/aps.45.1359
    [20] 李景德, 李家宝, 符史流, 沈文彬. 自由和随机介电弛豫. 物理学报, 1992, 41(1): 155-161. doi: 10.7498/aps.41.155
计量
  • 文章访问数:  2453
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-23
  • 修回日期:  2022-10-28
  • 上网日期:  2022-11-03
  • 刊出日期:  2023-02-05

/

返回文章
返回