搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外尔半金属调制的范德瓦耳斯声子极化激元色散性质

顾梓恒 臧强 郑改革

引用本文:
Citation:

外尔半金属调制的范德瓦耳斯声子极化激元色散性质

顾梓恒, 臧强, 郑改革

Dispersion properties of van der Waals phonon polaritons modulated by Weyl semimetals

Gu Zi-Heng, Zang Qiang, Zheng Gai-Ge
PDF
HTML
导出引用
  • 极性电介质支持的表面声子极化激元(surface phonon polaritons, SPhP)在红外波段增强光与物质相互作用过程中引起了广泛的关注, 然而存在光场操控有限、调制波段限定在剩余射线带区域的问题. 提出了一种由双轴范德瓦耳斯材料(α-MoO3)和外尔半金属组成的异质结构, 用来研究各向异性SPhP的主动可调谐性. 在横磁波入射条件下, 通过4×4传递矩阵法准确地求解异质系统中的反射系数以及场分布, 描述各向异性SPhP的色散性质. 研究结果表明: 模式杂化和色散操控可以通过方位角度及α-MoO3的厚度大小实现. 更重要的是外尔半金属中费米能级的大小能够启用动态色散曲线调节, 而费米能级依赖于外界温度的变化. 因此研究有助于进一步优化和设计基于范德瓦耳斯材料的可控光电器件, 在红外热辐射和生物传感等方面具有较好的应用前景.
    Surface phonon polaritons (SPhP) as an alternative constituent for mid-infrared (MIR) nanophotonic applications have attracted extensive attention and they maybe solve the intrinsic loss problem of plasmonics. SPhP arise in polar dielectrics due to IR-active phonon resonances, leading to negative permittivity within the Reststrahlen band. Although SPhP have great potential in enhancing the interaction between light and matter in the infrared region, it is still limited to enhance optical fields and fixed resonance band because of the existing Reststrahlen band. Moreover, active manipulating of phonon polaritons in MIR range remains elusive. The significant research progress of natural van der Waals (vdW) crystal and heterostructures have been made, which are characterized by an anisotropic polaritonic response, leading to elliptical, hyperbolic, or biaxial polaritonic dispersions. Among these structures, SPhP with hyperbolicity in α-MoO3 are of particular interest, due to not only the strong field confinement, low losses, and long lifetimes, but also the natural in-plane anisotropic dispersion. A heterostructure composed of a biaxial vdW material (α-MoO3) and a Weyl semimetal (WSM) is proposed to study the active tunability of anisotropic SPhP. The control of polaritons can show more degrees of freedom, which has not yet been addressed. Under the incident condition of transverse magnetic incident wave, the reflection coefficient and field distribution in the heterogeneous system are accurately solved by the 4×4 transfer matrix method, and the dispersion properties of anisotropic SPhP are described in detail. Variation of dispersion spectrum with azimuthal angle and α-MoO3 thickness is presented. The research results indicate that mode hybridization and dispersion manipulation can be realized by controlling the azimuth angle and the thickness of α-MoO3. More importantly, the Fermi level of WSM enable the adjustment of dynamic dispersion curve, which depends on the change of external temperature. Isofrequency curves of hybridized SPhP at different Fermi levels are also demonstrated. By chemically changing the Femi level of α-MoO3, the topology of polariton isofrequency surfaces transforms from open shape to closed shape as a result of polariton hybridization. Therefore, our research is helpful in further optimizing and designing active optoelectronic devices based on vdW materials, which have good application prospects in infrared heat radiation and biosensing.
      通信作者: 臧强, autozang@163.com ; 郑改革, eriot@126.com
    • 基金项目: 江苏省自然科学基金(批准号: BK20191396)资助的课题.
      Corresponding author: Zang Qiang, autozang@163.com ; Zheng Gai-Ge, eriot@126.com
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191396).
    [1]

    段嘉华, 陈佳宁 2019 物理学报 68 110701Google Scholar

    Duan J H, Chen J N 2019 Acta Phys. Sin. 68 110701Google Scholar

    [2]

    郑嘉璐, 戴志高, 胡光维, 欧清东, 张津瑞, 甘雪涛, 仇成伟, 鲍桥梁 2021 中国光学 14 812Google Scholar

    Zheng J L, Dai Z G, Hu G W, Ou Q D, Zhang J R, Gan X T, Qiu C W, Bao Q L 2021 Chin. Opt. 14 812Google Scholar

    [3]

    徐琨淇, 胡成, 沈沛约, 马赛群, 周先亮, 梁齐, 史志文 2023 物理学报 72 027102Google Scholar

    Xu K Q, Hu C, Shen P Y, Ma S Q, Zhou X L, Liang Q, Shi Z W 2023 Acta Phys. Sin. 72 027102Google Scholar

    [4]

    Hu G W, Ou Q D, Si G Y, Wu Y J, Wu J, Dai Z G, Krasnok A, Mazor Y, Zhang Q, Bao Q L, Qiu C W, Alù A 2020 Nature 582 209Google Scholar

    [5]

    Chaudhary K, Tamagnone M, Rezaee M, Bediako D K, Ambrosio A, Kim P, Capasso F 2019 Sci. Adv. 5 eaau7171Google Scholar

    [6]

    Álvarez-Pérez G, González-Morán A, Capote-Robayna N, Voronin K V, Duan J H, Volkov V S, Alonso-González P, Nikitin A Y 2022 ACS Photonics 9 383Google Scholar

    [7]

    Duan J, Álvarez-Pérez G, Voronin K V, Prieto I, Taboada-Gutiérrez J, Volkov V S, Martín-Sánchez J, Nikitin A Y, Alonso-González P 2021 Sci. Adv. 7 eabf2690Google Scholar

    [8]

    Hajian H, Rukhlenko I D, Hanson G W, Low T, Butun B, Ozbay E 2020 Nanophotonics 9 3909Google Scholar

    [9]

    Lee I H, He M Z, Zhang X, Luo Y J, Liu S, Edgar J H, Wang K, Avouris P, Low T, Caldwell J D, Oh S H 2020 Nat. Commun. 11 3649Google Scholar

    [10]

    Menabde S G, Jahng J, Boroviks S, Ahn J, Heiden J T, Hwang D K, Lee E S, Mortensen N A, Jang M S 2022 Adv. Optical Mater. 10 2201492Google Scholar

    [11]

    Erçağlar V, Hajian H, Rukhlenko I D, Ozbay E 2022 Appl. Phys. Lett. 121 182201Google Scholar

    [12]

    Schwartz J J, Le Son T, Krylyuk S, Richter C A, Davydov A V, Centrone A 2021 Nanophotonics 10 1517Google Scholar

    [13]

    Larciprete M C, Dereshgi S A, Centini M, Aydin K 2022 Opt. Express 30 12788Google Scholar

    [14]

    Gong Y, Zhao Y, Zhou Z, Li D, Mao H, Bao Q, Zhang Y, Wang G 2022 Adv. Opt. Mater. 10 2200038Google Scholar

    [15]

    Zheng Z, Chen J, Wang Y, Wang X, Chen X, Liu P, Xu J, Xie W, Chen H, Deng S, Xu N 2018 Adv. Mater. 30 1705318Google Scholar

    [16]

    Zhang Q, Zhen Z, Yang Y F, Gan G W, Jariwala D, Cui X D 2019 Opt. Express 27 18585Google Scholar

    [17]

    Huang W, Sun F, Zheng Z, Folland T G, Chen X, Liao H, Xu N, Caldwell J D, Chen H, Deng S 2021 Adv. Sci. 8 2004872Google Scholar

    [18]

    Hu G, Shen J, Qiu C W, Alù A, Dai S 2020 Adv. Optical Mater. 8 1901393Google Scholar

    [19]

    Dai S, Zhang J, MaQ, Kittiwatanakul S, McLeod A, Chen X, Corder S N G, Watanabe K, Taniguchi T, Lu J, Dai Q, Jarillo-Herrero P, Liu M, Basov D N 2019 Adv. Mater. 31 1900251Google Scholar

    [20]

    Passler N C, Heßler A, Wuttig M, Taubner T, Paarmann A 2020 Adv. Optical Mater. 8 1901056Google Scholar

    [21]

    Zhang Q, Ou Q, Hu G, Liu J, Dai Z, Fuhrer M S, Bao Q, Qiu C W 2021 Nano Lett. 21 3112Google Scholar

    [22]

    Hofmann J, Das S S 2016 Phys. Rev. B 93 241402Google Scholar

    [23]

    Zhao B, Guo C, Garcia C A C, Narang P, Fan S 2020 Nano Lett. 20 1923Google Scholar

    [24]

    Kotov O V, Lozovik Y E 2018 Phys. Rev. B 98 195446Google Scholar

    [25]

    Tamaya T, Kato T, Tsuchikawa K, Konabe S, Kawabata S 2019 J. Phys. Condens. Matter 31 305001Google Scholar

    [26]

    Schubert M 1996 Phys. Rev. B 53 4265Google Scholar

    [27]

    Wu X H, Fu C J, Zhang Z M 2019 Int. J. Heat Mass Tran. 135 1207Google Scholar

    [28]

    Hajian H, Ghobadi A, Dereshgi S A, Butun B, Ozbay E 2017 J. Opt. Soc. Am. B 34 D29Google Scholar

    [29]

    Fandan R, Pedrós J, Schiefele J, Boscá A, Martínez J, Calle F 2018 J. Phys. D: Appl. Phys. 51 204004Google Scholar

    [30]

    Wang Y, Khandekar C, Gao X, Li T, Jiao D, Jacob Z 2021 Opt. Mater. Express 11 3880Google Scholar

    [31]

    Wu J, Wu B Y, Wang Z M, Wu X H 2022 Int. J. Therm. Sci. 181 107788Google Scholar

    [32]

    Ashby P E C, Carbotte J P 2014 Phys. Rev. B 89 245121Google Scholar

    [33]

    Wu X H 2020 J. Heat Transfer 142 072802Google Scholar

  • 图 1  (a) α-MoO3/WSM异质结模型示意图; (b) WSM介电常数张量分量

    Fig. 1.  (a) Schematic diagram of α-MoO3/WSM heterostructure mode; (b) different parts of permittivity tensor components of WSM.

    图 2  不同传播角条件下的色散图谱(α-MoO3的厚度固定在d = 50 nm) (a) φ = 0°; (b) φ = 45°; (c) φ = 90° . k0kx分别代表真空中和x方向的波矢

    Fig. 2.  Dispersion spectra under different propagation angle conditions (Thickness of α-MoO3 is fixed at d = 50 nm): (a) φ = 0°; (b) φ = 45°; (c) φ = 90° . k0 and kx represent wave vectors in the vacuum and x direction, respectively

    图 3  色散图谱随方位角和α-MoO3厚度的变化 (a) 50 nm; (b) 500 nm; (c) 1000 nm; (d) 2000 nm

    Fig. 3.  Variation of dispersion spectra with azimuthal angle and α-MoO3 thickness: (a) 50 nm; (b) 500 nm; (c) 1000 nm; (d) 2000 nm.

    图 4  d = 50 nm, φ = 0°时, 不同费米能级下的色散图谱(其他参数同图2) (a) EF = 0.1 eV; (b) EF = 0.4 eV

    Fig. 4.  Dispersion spectra under different propagation angle conditions at d = 50 nm and φ = 0° (Other parameters are the same as used in Fig. 2): (a) EF = 0.1 eV; (b) EF = 0.4 eV.

    图 5  不同费米能级下色散图谱随方位角和频率的变化 (a) EF = 0.2 eV; (b) EF = 0.3 eV; (c) EF = 0. 35 eV; (d) EF = 0.4 eV

    Fig. 5.  Variation of dispersion spectra with azimuthal angle and frequency with different Femi levels: (a) EF = 0.2 eV; (b) EF = 0.3 eV; (c) EF = 0. 35 eV; (d) EF = 0.4 eV.

    图 6  不同费米能级下杂化SPhP的等频线(其他参数同图2) (a) EF = 0.2 eV; (b) EF = 0.25 eV; (c) EF = 0. 3 eV; (d) EF = 0.35 eV

    Fig. 6.  Equal-frequency curves of hybridized SPhP at different Fermi levels (Other parameters are the same as used in Fig. 2): (a) EF = 0.2 eV; (b) EF = 0.25 eV; (c) EF = 0. 3 eV; (d) EF = 0.35 eV.

  • [1]

    段嘉华, 陈佳宁 2019 物理学报 68 110701Google Scholar

    Duan J H, Chen J N 2019 Acta Phys. Sin. 68 110701Google Scholar

    [2]

    郑嘉璐, 戴志高, 胡光维, 欧清东, 张津瑞, 甘雪涛, 仇成伟, 鲍桥梁 2021 中国光学 14 812Google Scholar

    Zheng J L, Dai Z G, Hu G W, Ou Q D, Zhang J R, Gan X T, Qiu C W, Bao Q L 2021 Chin. Opt. 14 812Google Scholar

    [3]

    徐琨淇, 胡成, 沈沛约, 马赛群, 周先亮, 梁齐, 史志文 2023 物理学报 72 027102Google Scholar

    Xu K Q, Hu C, Shen P Y, Ma S Q, Zhou X L, Liang Q, Shi Z W 2023 Acta Phys. Sin. 72 027102Google Scholar

    [4]

    Hu G W, Ou Q D, Si G Y, Wu Y J, Wu J, Dai Z G, Krasnok A, Mazor Y, Zhang Q, Bao Q L, Qiu C W, Alù A 2020 Nature 582 209Google Scholar

    [5]

    Chaudhary K, Tamagnone M, Rezaee M, Bediako D K, Ambrosio A, Kim P, Capasso F 2019 Sci. Adv. 5 eaau7171Google Scholar

    [6]

    Álvarez-Pérez G, González-Morán A, Capote-Robayna N, Voronin K V, Duan J H, Volkov V S, Alonso-González P, Nikitin A Y 2022 ACS Photonics 9 383Google Scholar

    [7]

    Duan J, Álvarez-Pérez G, Voronin K V, Prieto I, Taboada-Gutiérrez J, Volkov V S, Martín-Sánchez J, Nikitin A Y, Alonso-González P 2021 Sci. Adv. 7 eabf2690Google Scholar

    [8]

    Hajian H, Rukhlenko I D, Hanson G W, Low T, Butun B, Ozbay E 2020 Nanophotonics 9 3909Google Scholar

    [9]

    Lee I H, He M Z, Zhang X, Luo Y J, Liu S, Edgar J H, Wang K, Avouris P, Low T, Caldwell J D, Oh S H 2020 Nat. Commun. 11 3649Google Scholar

    [10]

    Menabde S G, Jahng J, Boroviks S, Ahn J, Heiden J T, Hwang D K, Lee E S, Mortensen N A, Jang M S 2022 Adv. Optical Mater. 10 2201492Google Scholar

    [11]

    Erçağlar V, Hajian H, Rukhlenko I D, Ozbay E 2022 Appl. Phys. Lett. 121 182201Google Scholar

    [12]

    Schwartz J J, Le Son T, Krylyuk S, Richter C A, Davydov A V, Centrone A 2021 Nanophotonics 10 1517Google Scholar

    [13]

    Larciprete M C, Dereshgi S A, Centini M, Aydin K 2022 Opt. Express 30 12788Google Scholar

    [14]

    Gong Y, Zhao Y, Zhou Z, Li D, Mao H, Bao Q, Zhang Y, Wang G 2022 Adv. Opt. Mater. 10 2200038Google Scholar

    [15]

    Zheng Z, Chen J, Wang Y, Wang X, Chen X, Liu P, Xu J, Xie W, Chen H, Deng S, Xu N 2018 Adv. Mater. 30 1705318Google Scholar

    [16]

    Zhang Q, Zhen Z, Yang Y F, Gan G W, Jariwala D, Cui X D 2019 Opt. Express 27 18585Google Scholar

    [17]

    Huang W, Sun F, Zheng Z, Folland T G, Chen X, Liao H, Xu N, Caldwell J D, Chen H, Deng S 2021 Adv. Sci. 8 2004872Google Scholar

    [18]

    Hu G, Shen J, Qiu C W, Alù A, Dai S 2020 Adv. Optical Mater. 8 1901393Google Scholar

    [19]

    Dai S, Zhang J, MaQ, Kittiwatanakul S, McLeod A, Chen X, Corder S N G, Watanabe K, Taniguchi T, Lu J, Dai Q, Jarillo-Herrero P, Liu M, Basov D N 2019 Adv. Mater. 31 1900251Google Scholar

    [20]

    Passler N C, Heßler A, Wuttig M, Taubner T, Paarmann A 2020 Adv. Optical Mater. 8 1901056Google Scholar

    [21]

    Zhang Q, Ou Q, Hu G, Liu J, Dai Z, Fuhrer M S, Bao Q, Qiu C W 2021 Nano Lett. 21 3112Google Scholar

    [22]

    Hofmann J, Das S S 2016 Phys. Rev. B 93 241402Google Scholar

    [23]

    Zhao B, Guo C, Garcia C A C, Narang P, Fan S 2020 Nano Lett. 20 1923Google Scholar

    [24]

    Kotov O V, Lozovik Y E 2018 Phys. Rev. B 98 195446Google Scholar

    [25]

    Tamaya T, Kato T, Tsuchikawa K, Konabe S, Kawabata S 2019 J. Phys. Condens. Matter 31 305001Google Scholar

    [26]

    Schubert M 1996 Phys. Rev. B 53 4265Google Scholar

    [27]

    Wu X H, Fu C J, Zhang Z M 2019 Int. J. Heat Mass Tran. 135 1207Google Scholar

    [28]

    Hajian H, Ghobadi A, Dereshgi S A, Butun B, Ozbay E 2017 J. Opt. Soc. Am. B 34 D29Google Scholar

    [29]

    Fandan R, Pedrós J, Schiefele J, Boscá A, Martínez J, Calle F 2018 J. Phys. D: Appl. Phys. 51 204004Google Scholar

    [30]

    Wang Y, Khandekar C, Gao X, Li T, Jiao D, Jacob Z 2021 Opt. Mater. Express 11 3880Google Scholar

    [31]

    Wu J, Wu B Y, Wang Z M, Wu X H 2022 Int. J. Therm. Sci. 181 107788Google Scholar

    [32]

    Ashby P E C, Carbotte J P 2014 Phys. Rev. B 89 245121Google Scholar

    [33]

    Wu X H 2020 J. Heat Transfer 142 072802Google Scholar

  • [1] 李文秋, 唐彦娜, 刘雅琳, 马维聪, 王刚. 各向同性等离子体覆盖金属天线辐射增强现象. 物理学报, 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [2] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [3] 钱黎明, 孙梦然, 郑改革. α相三氧化钼中各向异性双曲声子极化激元的耦合性质. 物理学报, 2023, 72(7): 077101. doi: 10.7498/aps.72.20222144
    [4] 苏瑞霞, 黄霞, 郑志刚. 耦合Frenkel-Kontorova双链的格波解及其色散关系. 物理学报, 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [5] 高汉峰, 张欣, 吴福根, 姚源卫. 二维三组元声子晶体中的半狄拉克点及奇异特性. 物理学报, 2016, 65(4): 044301. doi: 10.7498/aps.65.044301
    [6] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性. 物理学报, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [7] 任益充, 范洪义. 不变本征算符方法求解含不同在位势的一维双原子链的色散关系. 物理学报, 2013, 62(15): 156301. doi: 10.7498/aps.62.156301
    [8] 李小泽, 滕雁, 王建国, 宋志敏, 张黎军, 张余川, 叶虎. 过模结构表面波振荡器模式选择. 物理学报, 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [9] 王冠宇, 宋建军, 张鹤鸣, 胡辉勇, 马建立, 王晓艳. 单轴应变Si导带色散关系解析模型. 物理学报, 2012, 61(9): 097103. doi: 10.7498/aps.61.097103
    [10] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [11] 刘三秋, 国洪梅. 极端相对论快电子分布等离子体中横振荡色散关系. 物理学报, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [12] 凌瑞良, 冯进, 冯金福. 三维各向异性耦合谐振子体系的量子化能谱与精确波函数. 物理学报, 2010, 59(12): 8348-8358. doi: 10.7498/aps.59.8348
    [13] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系. 物理学报, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [14] 季沛勇, 鲁楠, 祝俊. 量子等离子体中波的色散关系以及朗道阻尼. 物理学报, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [15] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [16] 宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜. 应变Si价带色散关系模型. 物理学报, 2008, 57(11): 7228-7232. doi: 10.7498/aps.57.7228
    [17] 蔡 力, 韩小云, 温熙森. 长波条件下二维声子晶体中的弹性波传播及各向异性. 物理学报, 2008, 57(3): 1746-1752. doi: 10.7498/aps.57.1746
    [18] 赵国伟, 徐跃民, 陈 诚. 等离子体天线色散关系和辐射场数值计算. 物理学报, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [19] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量. 物理学报, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [20] 范植开, 刘庆想. 谐振腔链色散关系及场分布的解析研究. 物理学报, 2000, 49(7): 1249-1255. doi: 10.7498/aps.49.1249
计量
  • 文章访问数:  954
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-10
  • 修回日期:  2023-08-18
  • 上网日期:  2023-08-19
  • 刊出日期:  2023-10-05

/

返回文章
返回