搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pr3+共掺杂调控的Li0.9K0.1NbO3:Er3+荧光粉上/下转换双模式光学测温研究

贾朝阳 杨雪 王志刚 柴瑞鹏 庞庆 张翔宇 高当丽

引用本文:
Citation:

Pr3+共掺杂调控的Li0.9K0.1NbO3:Er3+荧光粉上/下转换双模式光学测温研究

贾朝阳, 杨雪, 王志刚, 柴瑞鹏, 庞庆, 张翔宇, 高当丽

Dual-mode up/down-conversion optical thermometry of Pr3+-regulated Li0.9K0.1NbO3:Er3+ phosphors

Jia Chao-Yang, Yang Xue, Wang Zhi-Gang, Chai Rui-Peng, Pang Qing, Zhang Xiang-Yu, Gao Dang-Li
PDF
HTML
导出引用
  • 光热传感对于智能穿戴设备的开发至关重要. 然而, 设计合成具有合适多波长发射的发光材料, 并在单一材料体系中利用多组探针构建宽温度范围的高灵敏温度传感器是一个巨大挑战. 本研究采用高温固相法成功制备了Li0.9K0.1NbO3:Pr3+/Er3+单掺及双掺荧光粉. 通过X射线衍射仪、扫描电子显微镜、荧光光谱仪以及自制的加热装置对其结构、形貌及激发波长和温度依赖的荧光特性进行了表征. 详细研究了Er3+单掺与Pr3+, Er3+共掺样品的上/下转换荧光及Er3+的双模荧光温度传感特性. 结果表明: Pr3+掺杂优化了Li0.9K0.1NbO3:Er3+荧光粉中源自于Er3+离子热耦合能级的双模光学测温性能. 本研究为温度探测提供了材料基础和光学测温技术.
    Photothermal sensing is crucial in developing smart wearable devices. However, designing and synthesizing luminescent materials with suitable multi-wavelength emission and constructing multiple sets of probes in a single material system is a huge challenge for constructing sensitive temperature sensors with a wide temperature range. In this paper, Pr3+, Er3+ single-doped and double-doped Li0.9K0.1NbO3 phosphors are successfully prepared by high temperature solid phase method, and their structures, morphologies, excitation wavelengths and temperature-dependent fluorescence properties are characterized by XRD, SEM, fluorescence spectrometer and self-made heating device. Firstly, the photoluminescences of the synthesized series of samples are investigated. The results show that comparing with the single-doped Li0.9K0.1NbO3: Er3+ sample, the up/down-conversion spectra of Pr3+, Er3+ co-doped phosphors under 808 nm/380 nm excitation show that the green fluorescence emission of Er3+ is enhanced. In addition, under 980 nm excitation, Pr3+ can effectively regulate the fluorescence energy level population pathway, so that the electrons are more effectively arranged in the 2H11/2 and 4S3/2 energy levels in the excitation process. The red emission is weakened and the green emission is enhanced, which improves the signal resolution of the fluorescent material and has a significant influence on the optical temperature measurement. Secondly, the up-conversion fluorescence property of Er3+ under 808 nm/980 nm laser excitation in Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Pr3+,Er3+ phosphors are investigated. The results show that the red and green fluorescence emissions of Er3+ are two-photon processes. Finally, the up/down-conversion dual-mode temperature sensing properties of Er3+ in Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Pr3+, Er3+ phosphors are investigated. It is found that both materials have good optical temperature measurement performances. The Pr3+ doping optimizes the dual-mode optical temperature measurement performances of Li0.9K0.1NbO3:Er3+ phosphors derived from the thermal coupling energy level of Er3+ ions. In addition, the up/down-conversion fluorescence mechanism of Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Er3+, Pr3+ phosphors are proposed, and the enhanced green fluorescence by Pr3+ co-doping is attributed to the energy transfer from Pr3+ ions to Er3+ ions, leading to the increase of green fluorescence level population and the decrease of red fluorescence level population of the Er3+ ions. This new dual-mode optical temperature measurement material provides a material basis and optical temperature measurement technology for exploring other temperature measurement materials.
      通信作者: 高当丽, gaodangli@163.com
    • 基金项目: 国家自然科学基金(批准号: 11604253, 51672208)、陕西省重点科技创新团队项目(批准号: 2022TD-34)和中央高校基本科研业务费专项资金(批准号: 300102120101)资助的课题.
      Corresponding author: Gao Dang-Li, gaodangli@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604253, 51672208), the Key Science and Technology Innovation Team of Shaanxi Province, China (Grant No. 2022TD-34), and the Fundamental Research Funds for the Central Universities, China (Grant No. 300102120101).
    [1]

    Abbas M T, Khan N Z, Mao J, Qiu L, Wei X, Chen Y, Khan S A 2022 Mater. Today Chem. 24 100903Google Scholar

    [2]

    Hua Y B, Yu J S 2021 ACS Sustainable Chem. Eng. 9 5105Google Scholar

    [3]

    Wang X F, Liu Q, Bu Y Y, Liu C S, Liu T, Yan X H 2015 RSC Adv. 5 86219Google Scholar

    [4]

    Chen Y H, Chen J, Tong Y, Zhang W N, Peng X S, Guo H, Huang D X 2021 J. Rare Earths 39 1512Google Scholar

    [5]

    Tian Y, Tian B N, Cui C, Huang P, Wang L, Chen B J 2015 RSC Adv. 5 14123Google Scholar

    [6]

    Zhang J, Chen J J, Jin C 2020 J. Alloys Compd. 846 156397Google Scholar

    [7]

    León-Luis S F, Rodríguez-Mendoza U R, Martín I R, Lalla E, Lavín V 2013 Sens. Actuators, B 176 1167Google Scholar

    [8]

    Alencar M A, Maciel G S, de Araújo C B, Patra A 2004 Appl. Phys. Lett. 84 4753Google Scholar

    [9]

    Suo H, Guo C F, Li T 2016 J. Phys. Chem. C 120 2914Google Scholar

    [10]

    Zheng W, Sun B Y, Li Y M, Lei T, Wang R, Wu J Z 2020 ACS Sustainable Chem. Eng. 8 9578Google Scholar

    [11]

    Yu D C, Li H Y, Zhang D W, Zhang Q Y, Meijerink A, Suta M 2021 Light-Sci. Appl. 10 236Google Scholar

    [12]

    Singh A K, Singh S K, Gupta B K, Prakash R, Rai S B 2013 Dalton Trans. 42 1065Google Scholar

    [13]

    Zhao C L, Gao Y, Zhou D C, Zhu F M, Chen J Y, Qiu J B 2023 J. Alloys Compd. 944 169134Google Scholar

    [14]

    Wang Z Y, Zhang F H, Datsenko O I, Golovynskyi S, Sun Z H, Li B K, Wu H L 2023 J. Alloys Compd. 946 169350Google Scholar

    [15]

    阿热帕提·夏克尔, 王林香, 李晴, 柏云凤, 穆妮热·买买提 2023 物理学报 72 060701Google Scholar

    Arepati X, Wang L X, Li Q, Bai Y F, Munire M 2023 Acta Phys. Sin. 72 060701Google Scholar

    [16]

    Chen J, Guo J J, Chen Y H, Peng X S, Ashraf G A, Guo H 2021 J. Lumin. 238 118294Google Scholar

    [17]

    Gao D L, Zhao D, Pan Y, Chai R P, Pang Q, Zhang X Y, Chen W 2021 Ceram. Int. 47 32000Google Scholar

    [18]

    Li T, Guo C F, Zhou S H, Duan C K, Yin M 2015 J. Am. Ceram. Soc. 98 2812Google Scholar

    [19]

    Wu Y F, Suo H, He D, Guo C F 2018 Mater. Res. Bull. 106 14Google Scholar

    [20]

    Li X F, Guan L L, Li Y, Sun H Q, Zhang Q W, Hao X H 2020 J. Mater. Chem. C 8 15685Google Scholar

    [21]

    Gao D L, Gao F, Wu J L, Kuang Q Q, Xing C, Chen W 2022 Appl. Surf. Sci. 587 152820Google Scholar

    [22]

    Jilili S, Aierken P, Wang Q L, Tuerxun A, Wang L, Sidike A 2022 Ceram. Int. 48 15755Google Scholar

    [23]

    Maurya A, Bahadur A, Dwivedi A, Choudhary A K, Yadav T P, Vishwakarma P K, Rai S B 2018 J. Phys. Chem. Solids 119 228Google Scholar

    [24]

    Gao D L, Gao J, Zhao D, Pang Q, Xiao G Q, Wang L L, Ma K W 2020 J. Mater. Chem. C 8 17318Google Scholar

    [25]

    Tan S Y, Wang X S, Zhao Y, Li Y X, Yao X 2023 J. Lumin. 257 119747Google Scholar

    [26]

    Lu H Y, Lu Y, Zhu J, Li J X, Wang J Y, Zou H 2023 Phys. Status Solidi RRL 17 2200379Google Scholar

    [27]

    Kolesnikov I E, Mamonova D V, Kurochkin M A, Medvedev V A, Bai G X, Ivanova T Y, Kolesnikov E Y 2022 Phys. Chem. Chem. Phys. 24 15349Google Scholar

    [28]

    Liu Y, Bai G X, Pan E, Hua Y J, Chen L, Xu S Q 2020 J. Alloys Compd. 822 153449Google Scholar

    [29]

    Rakov N, Maciel G S 2014 Dalton Trans. 43 16025Google Scholar

    [30]

    Cortés-Adasme E, Vega M, Martin I R, Llanos J 2017 RSC Adv. 7 46796Google Scholar

    [31]

    Girisha H R, Lavanya D R, Daruka P B, Sharma S C, Nagabhushana H 2022 Opt. Mater. 134 113053Google Scholar

    [32]

    Raju G S R, Pavitra E, Rao G M, Jeon T J, Jeon S W, Huh Y S, Han Y K 2018 J. Alloys Compd. 756 82Google Scholar

    [33]

    Sahu M K, Jayasimhadri M, Haranath D 2022 Solid State Sci. 131 106956Google Scholar

    [34]

    Fu J, Zhou L Y, Chen Y L, Lin J H, Ye R G, Lei L, Shen Y, Deng D G, Xu S 2023 J. Am. Ceram. Soc. 106 1333Google Scholar

    [35]

    Zhu Y, Li X F, Guo Z Z, Sun H Q, Zhang Q W, Hao X H 2020 J. Am. Ceram. Soc. 103 3205Google Scholar

    [36]

    Banwal A, Bokolia R 2022 Ceram. Int. 48 2230Google Scholar

    [37]

    Fan Y, Xiao Q, Yin X M, Lv L, Wu X Y, Dong X Y, Xing M M, Tian Y, Luo X X 2022 Solid State Sci. 132 106966Google Scholar

    [38]

    Liu Q, Pan E, Deng H, Liu F C 2023 Ceram. Int. 49 14981Google Scholar

    [39]

    Chen Y L, Lin J H, Fu J, Ye R G, Lei L, Shen Y, Deng D G, Xu S Q 2022 J. Lumin. 252 119404Google Scholar

    [40]

    Yin X M, Xiao Q, Lü L, Wu X Y, Dong X Y, Fan Y, Zhou N, Luo X X 2023 Spectrochim. Acta, Part A 291 122324Google Scholar

    [41]

    Zhou W, Yang J, Jin X L, Peng Y, Luo J 2022 J. Lumin. 252 119275Google Scholar

    [42]

    Liu Y W, Meng L S, Wang H, Jiao J X, Xing M M, Peng Y, Luo X X, Tian Y 2021 Dalton Trans. 50 960Google Scholar

  • 图 1  (a) Li0.9K0.1NbO3:Ln3+系列样品的XRD图; (b) Li0.9K0.1NbO3的晶体结构图

    Fig. 1.  (a) XRD patterns of a series of Li0.9K0.1NbO3:Ln3+ samples; (b) crystal structure of Li0.9K0.1NbO3.

    图 2  Li0.9K0.1NbO3:Ln3+样品的SEM图片及EDX元素谱 (a) Li0.9K0.1NbO3:Er3+的SEM图片; (b) Li0.9K0.1NbO3:Pr3+, Er3+的SEM图片; (c) Li0.9K0.1NbO3:Er3+荧光粉的EDX元素分布图谱

    Fig. 2.  SEM images and element mappings of Li0.9K0.1NbO3:Ln3+ phosphors: (a) SEM image of Li0.9K0.1NbO3:Er3+; (b) SEM image of Li0.9K0.1NbO3:Pr3+, Er3+; (c) EDX elemental distribution spectra of Li0.9K0.1NbO3:Er3+ phosphors.

    图 3  不同波长激发下, Li0.9K0.1NbO3:Ln3+的上/下转换发射谱比较 (a) Pr3+和Er3+单掺样品及Pr3+, Er3+共掺样品的发射谱 (λex = 280 nm/380 nm); (b) Pr3+, Er3+共掺样品的激发谱(λmoni = 554 nm/620 nm); Er3+单掺及Pr3+, Er3+共掺样品在(c) λex= 808 nm, (d) 980 nm激光激发下的上转换发射谱

    Fig. 3.  Comparison of up-conversion and down-conversion emission spectra of rare earth doped Li0.9K0.1NbO3:Ln3+ under different excitation wavelengths: (a) Emission spectra of Pr3+ and Er3+ single-doped samples and Pr3+, Er3+ co-doped samples (λex = 280 nm/380 nm); (b) excitation spectra of Pr3+, Er3+ co-doped samples (λmoni = 554 nm/620 nm); (c), (d) up-conversion emission spectra of Er3+ single doped and Pr3+, Er3+ co-doped samples under 808 and 980 nm excitations.

    图 4  激发功率依赖的Li0.9K0.1NbO3:Er3+和Li0.9K0.1NbO3:Pr3+, Er3+荧光粉的发射谱, 其中内插图为对应发光强度与入射激光的功率关系 (a), (b) Li0.9K0.1NbO3:Er3+荧光粉的发射谱(λex = 808 nm和λex = 980 nm); (c), (d) Li0.9K0.1NbO3:Pr3+, Er3+荧光粉的发射谱(λex = 808 nm和λex = 980 nm)

    Fig. 4.  Excitation power-dependent emission spectra of Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Pr3+, Er3+ phosphors, where the insets are the relationships between luminescence intensity and incident laser power: (a), (b) Emission spectra of Li0.9K0.1NbO3:Er3+ phosphors (λex = 808 nm and λex = 980 nm); (c), (d) emission spectra of Li0.9K0.1NbO3:Pr3+, Er3+ phosphors (λex = 808 nm and λex = 980 nm).

    图 5  Li0.9K0.1NbO3:Er3+荧光粉的上、下转换测温性能 (a)—(c) 分别在380, 808, 980 nm激发下的发射谱; (d)—(f) 相应于图(a)—(c)中的上/下转换发射谱的双峰绿色FIR与温度的关系; (g)—(i) 相应于图(d)—(f)中双峰荧光强度比率测温的灵敏度曲线

    Fig. 5.  Up/down-conversion temperature measurement performance of Li0.9K0.1NbO3:Er3+ phosphor: (a)–(c) The emission spectra excited at 380, 808 and 980 nm, respectively; (d)–(f) the relationship between the bimodal green FIR and temperature corresponding to the up/down-conversion emission spectra in panel (a)–(c); (g)–(i) the sensitivity curves of temperature measurement of bimodal FIR corresponding to panel (d)–(f).

    图 6  Li0.9K0.1NbO3:Pr3+, Er3+荧光粉的上/下转换双模式光学测温性能 (a)—(c) 分别在380, 808, 980 nm激发下的发射谱; (d)—(f) 相应于图(a)—(c)中的上/下转换发射谱的双峰绿色FIR与温度的关系; (g)—(i) 相应于图(d)—(f)中双峰FIR测温的灵敏度曲线

    Fig. 6.  Up/down-conversion temperature measurement performance of Li0.9K0.1NbO3:Pr3+, Er3+ phosphor: (a)–(c) The emission spectra excited at 380, 808, and 980 nm, respectively; (d)–(f) the relationship between the bimodal green FIR and temperature corresponding to the up/down-conversion emission spectra in panel (a)–(c); (g)–(i) the sensitivity curves of temperature measurement of bimodal FIR corresponding to panel (d)–(f).

    图 7  源自于Li0.9K0.1NbO3:Er3+和Li0.9K0.1NbO3:Er3+, Pr3+荧光粉的上/下转换荧光机理图, 其中, VB表示价带, CB表示导带

    Fig. 7.  Proposed mechanism of up/down-conversion fluorescence of Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Er3+, Pr3+ phosphors. Therein, VB and CB represent valence band and conduction band, respectively.

    表 1  基于FIR技术下不同基质中掺杂Er3+的温度传感材料光学参数

    Table 1.  Optical parameters of temperature sensing materials doped with Er3+ in different substrates based on FIR technology

    Materials Wavelength/nm Sr-Max/(10–2 K–1) Sa-Max/(10–2 K–1) References
    SrSnO3:Er 975 nm 0.997(294 K) 0.791(368 K) [30]
    BaBiNb2O9:Er 980 nm 0.959(300 K) 0.996(483 K) [36]
    La2CaZnO5:Er 378 nm 1.454(300 K) [31]
    Sr2Gd8(SiO4)6O2:Er 379 nm 0.34(463 K) [32]
    Ca3Bi(PO4)3:Er 376 nm 1.21(300 K) 0.312(473 K) [33]
    La2Mo2O9:Er 980 nm 1.16(293 K) 0.527(493 K) [37]
    (K, Na)NbO3:Er 980 nm
    375 nm
    0.96(303 K)
    16.17(80 K)
    0.28(433 K)
    0.37(280 K)
    [38]
    Cs3Bi2Cl9:Er 808 nm
    980 nm
    1.4(303 K)
    1.38(303 K)
    0.62(573 K)
    0.61(573 K)
    [13]
    Li0.9K0.1NbO3:Er 380 nm
    808 nm
    980 nm
    0.97(303 K)
    1.286(297 K)
    1.221(297 K)
    0.44(463 K)
    0.89(443 K)
    0.81(443 K)
    This
    work
    下载: 导出CSV

    表 2  基于FIR技术下不同基质中掺杂Er3+-Ln3+的温度传感材料光学参数

    Table 2.  Optical parameters of temperature sensing materials doped with Er3+-Ln3+ in different substrates based on FIR technology.

    Materials Wavelength/nm Sr-Max/(10–2 K–1) Sa-Max/(10–2 K–1) References
    La2MgGeO6:Bi, Er 980 nm 1.23(293 K) 0.94(473 K) [39]
    K3Gd(PO4)2:Yb, Er, Tm 980 nm 1.35(300 K) 0.456(608 K) [40]
    NaLuF4:Er, Tm 1532 nm 1.265(293 K) 0.4(519 K) [41]
    BiVO4:Er, Tm 980 nm 1.1(293 K) 0.7(473 K) [42]
    1550 nm 1.1(293 K) 0.56(453 K)
    Y2SiO5:Er, Tm 808 nm 0.395(298 K) [29]
    KYb(MoO4)2:Er, Gd 980 nm 1.1(303 K) 0.97(513 K) [25]
    KYb(MoO4)2:Er, La 1.1(303 K) 0.95(513 K)
    KYb(MoO4)2:Er, Y 1.11(303 K) 0.91(513 K)
    Li0.9K0.1NbO3:Pr, Er 380 nm 1.12(296 K) 0.54(434 K) This
    work
    808 nm 1.284(296 K) 1.12(443 K)
    980 nm 1.106(296 K) 0.83(443 K)
    下载: 导出CSV
  • [1]

    Abbas M T, Khan N Z, Mao J, Qiu L, Wei X, Chen Y, Khan S A 2022 Mater. Today Chem. 24 100903Google Scholar

    [2]

    Hua Y B, Yu J S 2021 ACS Sustainable Chem. Eng. 9 5105Google Scholar

    [3]

    Wang X F, Liu Q, Bu Y Y, Liu C S, Liu T, Yan X H 2015 RSC Adv. 5 86219Google Scholar

    [4]

    Chen Y H, Chen J, Tong Y, Zhang W N, Peng X S, Guo H, Huang D X 2021 J. Rare Earths 39 1512Google Scholar

    [5]

    Tian Y, Tian B N, Cui C, Huang P, Wang L, Chen B J 2015 RSC Adv. 5 14123Google Scholar

    [6]

    Zhang J, Chen J J, Jin C 2020 J. Alloys Compd. 846 156397Google Scholar

    [7]

    León-Luis S F, Rodríguez-Mendoza U R, Martín I R, Lalla E, Lavín V 2013 Sens. Actuators, B 176 1167Google Scholar

    [8]

    Alencar M A, Maciel G S, de Araújo C B, Patra A 2004 Appl. Phys. Lett. 84 4753Google Scholar

    [9]

    Suo H, Guo C F, Li T 2016 J. Phys. Chem. C 120 2914Google Scholar

    [10]

    Zheng W, Sun B Y, Li Y M, Lei T, Wang R, Wu J Z 2020 ACS Sustainable Chem. Eng. 8 9578Google Scholar

    [11]

    Yu D C, Li H Y, Zhang D W, Zhang Q Y, Meijerink A, Suta M 2021 Light-Sci. Appl. 10 236Google Scholar

    [12]

    Singh A K, Singh S K, Gupta B K, Prakash R, Rai S B 2013 Dalton Trans. 42 1065Google Scholar

    [13]

    Zhao C L, Gao Y, Zhou D C, Zhu F M, Chen J Y, Qiu J B 2023 J. Alloys Compd. 944 169134Google Scholar

    [14]

    Wang Z Y, Zhang F H, Datsenko O I, Golovynskyi S, Sun Z H, Li B K, Wu H L 2023 J. Alloys Compd. 946 169350Google Scholar

    [15]

    阿热帕提·夏克尔, 王林香, 李晴, 柏云凤, 穆妮热·买买提 2023 物理学报 72 060701Google Scholar

    Arepati X, Wang L X, Li Q, Bai Y F, Munire M 2023 Acta Phys. Sin. 72 060701Google Scholar

    [16]

    Chen J, Guo J J, Chen Y H, Peng X S, Ashraf G A, Guo H 2021 J. Lumin. 238 118294Google Scholar

    [17]

    Gao D L, Zhao D, Pan Y, Chai R P, Pang Q, Zhang X Y, Chen W 2021 Ceram. Int. 47 32000Google Scholar

    [18]

    Li T, Guo C F, Zhou S H, Duan C K, Yin M 2015 J. Am. Ceram. Soc. 98 2812Google Scholar

    [19]

    Wu Y F, Suo H, He D, Guo C F 2018 Mater. Res. Bull. 106 14Google Scholar

    [20]

    Li X F, Guan L L, Li Y, Sun H Q, Zhang Q W, Hao X H 2020 J. Mater. Chem. C 8 15685Google Scholar

    [21]

    Gao D L, Gao F, Wu J L, Kuang Q Q, Xing C, Chen W 2022 Appl. Surf. Sci. 587 152820Google Scholar

    [22]

    Jilili S, Aierken P, Wang Q L, Tuerxun A, Wang L, Sidike A 2022 Ceram. Int. 48 15755Google Scholar

    [23]

    Maurya A, Bahadur A, Dwivedi A, Choudhary A K, Yadav T P, Vishwakarma P K, Rai S B 2018 J. Phys. Chem. Solids 119 228Google Scholar

    [24]

    Gao D L, Gao J, Zhao D, Pang Q, Xiao G Q, Wang L L, Ma K W 2020 J. Mater. Chem. C 8 17318Google Scholar

    [25]

    Tan S Y, Wang X S, Zhao Y, Li Y X, Yao X 2023 J. Lumin. 257 119747Google Scholar

    [26]

    Lu H Y, Lu Y, Zhu J, Li J X, Wang J Y, Zou H 2023 Phys. Status Solidi RRL 17 2200379Google Scholar

    [27]

    Kolesnikov I E, Mamonova D V, Kurochkin M A, Medvedev V A, Bai G X, Ivanova T Y, Kolesnikov E Y 2022 Phys. Chem. Chem. Phys. 24 15349Google Scholar

    [28]

    Liu Y, Bai G X, Pan E, Hua Y J, Chen L, Xu S Q 2020 J. Alloys Compd. 822 153449Google Scholar

    [29]

    Rakov N, Maciel G S 2014 Dalton Trans. 43 16025Google Scholar

    [30]

    Cortés-Adasme E, Vega M, Martin I R, Llanos J 2017 RSC Adv. 7 46796Google Scholar

    [31]

    Girisha H R, Lavanya D R, Daruka P B, Sharma S C, Nagabhushana H 2022 Opt. Mater. 134 113053Google Scholar

    [32]

    Raju G S R, Pavitra E, Rao G M, Jeon T J, Jeon S W, Huh Y S, Han Y K 2018 J. Alloys Compd. 756 82Google Scholar

    [33]

    Sahu M K, Jayasimhadri M, Haranath D 2022 Solid State Sci. 131 106956Google Scholar

    [34]

    Fu J, Zhou L Y, Chen Y L, Lin J H, Ye R G, Lei L, Shen Y, Deng D G, Xu S 2023 J. Am. Ceram. Soc. 106 1333Google Scholar

    [35]

    Zhu Y, Li X F, Guo Z Z, Sun H Q, Zhang Q W, Hao X H 2020 J. Am. Ceram. Soc. 103 3205Google Scholar

    [36]

    Banwal A, Bokolia R 2022 Ceram. Int. 48 2230Google Scholar

    [37]

    Fan Y, Xiao Q, Yin X M, Lv L, Wu X Y, Dong X Y, Xing M M, Tian Y, Luo X X 2022 Solid State Sci. 132 106966Google Scholar

    [38]

    Liu Q, Pan E, Deng H, Liu F C 2023 Ceram. Int. 49 14981Google Scholar

    [39]

    Chen Y L, Lin J H, Fu J, Ye R G, Lei L, Shen Y, Deng D G, Xu S Q 2022 J. Lumin. 252 119404Google Scholar

    [40]

    Yin X M, Xiao Q, Lü L, Wu X Y, Dong X Y, Fan Y, Zhou N, Luo X X 2023 Spectrochim. Acta, Part A 291 122324Google Scholar

    [41]

    Zhou W, Yang J, Jin X L, Peng Y, Luo J 2022 J. Lumin. 252 119275Google Scholar

    [42]

    Liu Y W, Meng L S, Wang H, Jiao J X, Xing M M, Peng Y, Luo X X, Tian Y 2021 Dalton Trans. 50 960Google Scholar

  • [1] 刘顺瑞, 聂照庭, 张明磊, 王丽, 冷雁冰, 孙艳军. 利用纳米球提高红外波长上转换探测器效率. 物理学报, 2017, 66(18): 188501. doi: 10.7498/aps.66.188501
    [2] 王超, 郝智彪, 王磊, 康健彬, 谢莉莉, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘. 利用表面微结构提高波长上转换红外探测器效率. 物理学报, 2016, 65(10): 108501. doi: 10.7498/aps.65.108501
    [3] 潘安, 张晓菲, 王彬, 赵青, 史祎诗. 厚样品三维叠层衍射成像的实验研究. 物理学报, 2016, 65(1): 014204. doi: 10.7498/aps.65.014204
    [4] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像. 物理学报, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [5] 林悠优, 李江涛, 朱海永, 廖小青, 段延敏, 章健, 唐定远. Nd:YAG陶瓷与单晶4F3/2–4I13/2跃迁的弱谱线多波长激光性能对比. 物理学报, 2015, 64(20): 204204. doi: 10.7498/aps.64.204204
    [6] 狄慧鸽, 侯晓龙, 赵虎, 阎蕾洁, 卫鑫, 赵欢, 华灯鑫. 多波长激光雷达探测多种天气气溶胶光学特性与分析. 物理学报, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [7] 薛明晰, 陈志斌, 王伟明, 欧阳慧泉, 刘先红, 宋岩, 张超, 肖文健, 侯章亚. 多波长红外激光二极管峰值光谱热漂移研究. 物理学报, 2014, 63(15): 154206. doi: 10.7498/aps.63.154206
    [8] 岳孝林, 王金东, 魏正军, 郭邦红, 刘颂豪. 一种新的单光源多波长双向量子密钥分发系统. 物理学报, 2012, 61(18): 184215. doi: 10.7498/aps.61.184215
    [9] 朱化春, 张淳民. 偏振风成像干涉仪多波长探测理论研究. 物理学报, 2011, 60(7): 074211. doi: 10.7498/aps.60.074211
    [10] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法的多波长激光相干合成. 物理学报, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [11] 张婧, 潘炜, 闫连山, 罗斌. 基于光纤自相位调制多波长全光再生的色散管理优化. 物理学报, 2010, 59(10): 7002-7007. doi: 10.7498/aps.59.7002
    [12] 周亚训, 戴世勋, 周灵, 徐铁峰, 聂秋华, 黄尚廉. 掺铒碲酸盐玻璃中的协作上转换能量转移. 物理学报, 2009, 58(2): 1261-1268. doi: 10.7498/aps.58.1261
    [13] 李培丽, 黄德修, 张新亮, 朱光喜. 基于多电极单端耦合半导体光放大器的交叉增益调制型波长转换器. 物理学报, 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
    [14] 李善锋, 苗 壮, 彭 扬, 张庆瑜. 掺Yb硼硅酸盐玻璃的光学特性及其双光子合作上转换荧光. 物理学报, 2006, 55(8): 4315-4320. doi: 10.7498/aps.55.4315
    [15] 温 磊, 张丽艳, 杨建虎, 汪国年, 陈 伟, 胡丽丽. 掺铒氟(卤)磷碲酸盐玻璃的上转换发光性能研究. 物理学报, 2006, 55(3): 1486-1490. doi: 10.7498/aps.55.1486
    [16] 吴朝辉, 宋 峰, 刘淑静, 覃 斌, 苏 静, 田建国, 张光寅. 上转换对Er3+,Yb3+共掺磷酸盐玻璃激光器输出的影响. 物理学报, 2005, 54(12): 5637-5641. doi: 10.7498/aps.54.5637
    [17] 菅冀祁, 马 骋, 贾惠波. 光致变色双波长光存储读出信号串扰建模与消减. 物理学报, 2005, 54(8): 3604-3609. doi: 10.7498/aps.54.3604
    [18] 温 磊, 杨建虎, 胡丽丽. 掺Er3+卤碲酸盐玻璃上转换能级寿命和发光性能研究. 物理学报, 2004, 53(12): 4378-4381. doi: 10.7498/aps.53.4378
    [19] 齐国生, 肖家曦, 刘嵘, 蒋培军, 佘鹏, 徐端颐. 光致变色二芳基乙烯多波长光存储研究. 物理学报, 2004, 53(4): 1076-1080. doi: 10.7498/aps.53.1076
    [20] 郝昭, 陈晓波, 侯延冰, 宋峰, 王虹, 张光寅. Tm,Yb掺杂五磷酸盐非晶中的上转换蓝光发射. 物理学报, 1997, 46(6): 1206-1211. doi: 10.7498/aps.46.1206
计量
  • 文章访问数:  2378
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-19
  • 修回日期:  2023-08-13
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-12-20

/

返回文章
返回