搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时间旅行的量子门

王粲 陆朝阳 陈明城

引用本文:
Citation:

时间旅行的量子门

王粲, 陆朝阳, 陈明城

Quantum computing with time-travelling quantum gates

Wang Can, Lu Chao-Yang, Chen Ming-Cheng
PDF
HTML
导出引用
  • 量子计算可以解决经典计算难于求解的问题, 在物理原理允许范围内扩大了可有效计算的问题范围, 对经典计算的扩展丘奇图灵论题提出了挑战. 这里我们讨论一个有趣的问题: 通过突破物理原理限制来实现更强大的计算机, 进一步扩展量子计算机的能力. 我们考虑一种全新的操纵能力, 让量子计算可以实现时间穿梭旅行的量子控制门. 这是量子门线路图形语言的一个符合直觉的扩展, 作为例子, 我们展示了一个可以有效求解SAT难题的扩展量子算法. 我们的结果有助于更深刻地理解计算和物理原理之间的关系.
    Quantum computing can solve problems that are difficult to solve in classical computing, expanding the range of problems that can be effectively computed within the allowable range of classical physical principles, and posing a challenge to the extended Church-Turing thesis in classical computing. Here, we discuss an interesting question: how to achieve more powerful computers by breaking through the limitations of physical principles, further enhancing the capabilities of quantum computers. To extend quantum computing, novel operations related to relativistic physics are a crucial candidate. Among them, the concept of closed time-like curve has aroused widespread interest, and it introduces the ability for time travel. Mathematically, quantum state along the closed time-like curve is determined through self-consistent equations, which has been demonstrated in simulations. Here, we consider a novel manipulation capability that allows quantum computing to achieve time-travelling quantum control gate. This is an intuitive extension of the graphical language of quantum circuits. Explaining quantum circuits as tensor networks, we first explain how to experimentally simulate the output of such a circuit in a system without time-travel capability. Then, we take an example to demonstrate an extended quantum algorithm that can efficiently solve SAT problems, indicating that with the involvement of time-travelling quantum gates, the computational complexity class P = NP. We also anticipate that the time-travelling quantum gates will play a facilitating role in accomplishing other quantum tasks, including achieving deterministic non-orthogonal quantum state discrimination, and quantum state cloning. Our results contribute to a more in-depth understanding of the relationship between computation and physical principles.
      通信作者: 陈明城, cmc@ustc.edu.cn
      Corresponding author: Chen Ming-Cheng, cmc@ustc.edu.cn
    [1]

    Deutsch D 1997 The Fabric of Reality: The Science of Parallel Universes-and Its Implications (Penguin Books) p98

    [2]

    Landauer R 1961 IBM J. Res. Dev. 5 183Google Scholar

    [3]

    Bernstein E, Vazirani U 1993 Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing San Diego California USA, May 16–18, 1993 p11

    [4]

    Fortnow L 2009 Commun. ACM 52 78

    [5]

    Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science Santa Fe NM USA, November 20–22, 1994 p124

    [6]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [7]

    Wu Y L, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar

    [8]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [9]

    Madsen L S, Madsen L S, Laudenbach F, et al. 2022 Nature 606 75Google Scholar

    [10]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press) p40

    [11]

    Cook S A 2023 Logic, Automata, and Computational Complexity: The Works of Stephen A. Cook (Vol. 43) (ACM Books) p143

    [12]

    Gott J R 1991 Phys. Rev. Lett. 66 1126Google Scholar

    [13]

    Deutsch D 1991 Phys. Rev. D 44 3197Google Scholar

    [14]

    Lloyd S, Maccone L, Garcia-Patron R, Giovannetti V, Shikano Y, Pirandola S, Rozema L A, Darabi A, Soudagar Y, Shalm L K, Steinberg A M 2011 Phys. Rev. Lett. 106 040403Google Scholar

    [15]

    Ringbauer M, Broome M A, Myers C R, White A G, Ralph T C 2014 Nat. Commun. 5 4145Google Scholar

    [16]

    Bacon D 2004 Phys. Rev. A 70 032309Google Scholar

    [17]

    Chen M C, Li R L, Gan L, Zhu X B, Yang G W, Lu C Y, Pan J W 2020 Phys. Rev. Lett. 124 080502Google Scholar

    [18]

    Brun T A, Harrington J, Wilde M M 2009 Phys. Rev. Lett. 102 210402Google Scholar

    [19]

    Vairogs C, Katariya V, Wilde M M 2022 Phys. Rev. A 105 052434Google Scholar

    [20]

    Brun T A, Wilde M M, Winter A 2013 Phys. Rev. Lett. 111 190401Google Scholar

    [21]

    Ahn D, Myers C R, Ralph T C, Mann R B 2013 Phys. Rev. A 88 022332Google Scholar

  • 图 1  扩展量子门线路 (a)标准的量子门线路; (b)包含时间旅行的CNOT门的线路

    Fig. 1.  Extending quantum circuits: (a) Standard quantum circuit; (b) circuit incorporating a time-travelling CNOT gate

    图 2  等效的张量网络表示, 借助辅助量子比特(蓝色线)可以非确定性地模拟实现时间旅行CNOT门 (a)示例1, 在时间旅行门的两个拐角, 引入两个分支, 认作一个辅助量子比特(蓝色线), 将其初态制备到$ \left| + \right\rangle $态并同时后选择投影到$ \left\langle + \right| $态, 右图是相应的标准量子门线图表示; (b)示例2, 相比示例1时间旅行门作用在同一个物理量子比特上, 示例2展示了其作用在不同物理量子比特上的情形

    Fig. 2.  Equivalent tensor network representation. Using auxiliary qubits (blue line), the implementation of a time-travelling CNOT gate can be nondeterministically simulated: (a) Example 1, where we introduce two branches at the two corners of the time-travelling gate and consider an auxiliary qubit (blue line) prepared in the $ \left|+\rangle \right. $ state and subsequently projected to the $ \langle \left.+\right| $ state, the right diagram is the corresponding standard quantum circuit representation; (b) example 2, in contrast to example 1, demonstrates its operation on different physical qubits.

    图 3  求解SAT问题 (a)设计的量子算法, 门线路的深度线性正比于SAT问题规模, 即子句的数量$ m $, 最上面$ n $个量子比特作为SAT问题解的寄存器, 中间$ m $个量子比特用于标记$ m $个逻辑子句是否被独立满足, 最后一个量子比特标记位用于判断是否所有的逻辑子句被同时满足; (b)最后标记位上的时间旅行CNOT门的运行细节, 这里$ p $对应张量网络解释中的后选择概率, 当算法中的标记位为$ \left| 1 \right\rangle $时, 相应的辅助量子比特的后选择投影概率为0; 而标记位为$ \left| 0 \right\rangle $时, 后选择投影概率为1, 算法最终只输出标记位为$ \left| 0 \right\rangle $的情况, 这对应上面寄存器里只存储了正确的解

    Fig. 3.  Solving the SAT problem. (a) The designed quantum algorithm, with the depth of the circuit linearly proportional to the SAT problem size, i.e., the number of clauses $ m $. The top $ n $ qubits serve as registers for solving the SAT problem, the middle $ m $ qubits are used to mark whether $ m $ logical clauses are independently satisfied, and the last qubits is used to determine whether all logical clauses are simultaneously satisfied. (b) Operational details of the time-travelling CNOT gate on the final marking qubit, here, $ p $ corresponds to the posterior-select probability in tensor network interpretation: When the marking qubit in the algorithm is $ \left|1\rangle \right. $, the corresponding auxiliary qubits have a posterior-select projection probability of 0; while the marking qubit is $ \left|0\rangle \right. $, the posterior-select projection probability is 1. The algorithm ultimately only outputs the case where the marking qubit is $ \left|0\rangle \right. $, corresponding to storing only the correct solutions in the registers above.

  • [1]

    Deutsch D 1997 The Fabric of Reality: The Science of Parallel Universes-and Its Implications (Penguin Books) p98

    [2]

    Landauer R 1961 IBM J. Res. Dev. 5 183Google Scholar

    [3]

    Bernstein E, Vazirani U 1993 Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing San Diego California USA, May 16–18, 1993 p11

    [4]

    Fortnow L 2009 Commun. ACM 52 78

    [5]

    Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science Santa Fe NM USA, November 20–22, 1994 p124

    [6]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [7]

    Wu Y L, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar

    [8]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [9]

    Madsen L S, Madsen L S, Laudenbach F, et al. 2022 Nature 606 75Google Scholar

    [10]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press) p40

    [11]

    Cook S A 2023 Logic, Automata, and Computational Complexity: The Works of Stephen A. Cook (Vol. 43) (ACM Books) p143

    [12]

    Gott J R 1991 Phys. Rev. Lett. 66 1126Google Scholar

    [13]

    Deutsch D 1991 Phys. Rev. D 44 3197Google Scholar

    [14]

    Lloyd S, Maccone L, Garcia-Patron R, Giovannetti V, Shikano Y, Pirandola S, Rozema L A, Darabi A, Soudagar Y, Shalm L K, Steinberg A M 2011 Phys. Rev. Lett. 106 040403Google Scholar

    [15]

    Ringbauer M, Broome M A, Myers C R, White A G, Ralph T C 2014 Nat. Commun. 5 4145Google Scholar

    [16]

    Bacon D 2004 Phys. Rev. A 70 032309Google Scholar

    [17]

    Chen M C, Li R L, Gan L, Zhu X B, Yang G W, Lu C Y, Pan J W 2020 Phys. Rev. Lett. 124 080502Google Scholar

    [18]

    Brun T A, Harrington J, Wilde M M 2009 Phys. Rev. Lett. 102 210402Google Scholar

    [19]

    Vairogs C, Katariya V, Wilde M M 2022 Phys. Rev. A 105 052434Google Scholar

    [20]

    Brun T A, Wilde M M, Winter A 2013 Phys. Rev. Lett. 111 190401Google Scholar

    [21]

    Ahn D, Myers C R, Ralph T C, Mann R B 2013 Phys. Rev. A 88 022332Google Scholar

  • [1] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [2] 张杨, 宋晓艳, 徐文武, 张哲旭. SmCo7纳米晶合金晶粒组织热稳定性的热力学分析与计算机模拟. 物理学报, 2012, 61(1): 016102. doi: 10.7498/aps.61.016102
    [3] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟. 物理学报, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [4] 汪 敏, 胡小方. 衍射增强计算机断层技术研究. 物理学报, 2007, 56(8): 4989-4993. doi: 10.7498/aps.56.4989
    [5] 李之杰, 潘正瑛, 朱 靖, 魏 启, 王月霞, 臧亮坤, 周 亮, 刘提将. 离子束辅助沉积对类金刚石膜结构影响的计算机模拟. 物理学报, 2005, 54(5): 2233-2238. doi: 10.7498/aps.54.2233
    [6] 郑小平, 张佩峰, 刘 军, 贺德衍, 马健泰. 薄膜外延生长的计算机模拟. 物理学报, 2004, 53(8): 2687-2693. doi: 10.7498/aps.53.2687
    [7] 许峰, 黄永仁. 特形脉冲的设计与计算机模拟. 物理学报, 2002, 51(11): 2617-2622. doi: 10.7498/aps.51.2617
    [8] 蓝海江, 扬庆怡, 韦联福. 单离子阱中基本量子逻辑单元的实现. 物理学报, 2002, 51(8): 1730-1735. doi: 10.7498/aps.51.1730
    [9] 王六定, 陈长乐, 刘 林, 康沫狂, 冀邦杰, 卫英慧. Cu-4wt%Ti合金有序化X射线与电子衍射谱的计算机模拟. 物理学报, 2000, 49(5): 926-930. doi: 10.7498/aps.49.926
    [10] 陈宝玖, 秦伟平, 王海宇, 许 武, 黄世华. 能量传递过程的计算机模拟. 物理学报, 1999, 48(3): 545-549. doi: 10.7498/aps.48.545
    [11] 吴锋民, 朱启鹏, 吴自勤. 超薄膜外延生长的计算机模拟. 物理学报, 1998, 47(9): 1427-1435. doi: 10.7498/aps.47.1427
    [12] 吕晓阳, 刘慕仁, 孔令江. 一维元胞自动机随机交通流模型的理论分析与计算机实验. 物理学报, 1998, 47(11): 1761-1768. doi: 10.7498/aps.47.1761
    [13] 曾建林, 巴龙, 侯建国, 吴自勤. 薄膜中缩聚型分形的计算机模拟. 物理学报, 1997, 46(1): 28-34. doi: 10.7498/aps.46.28
    [14] 张登玉. 自发发射与量子计算机存储单元的相干脱散. 物理学报, 1997, 46(4): 656-660. doi: 10.7498/aps.46.656
    [15] 林鸿溢, 武旭辉, 何宇亮, 褚一鸣. 纳米硅薄膜的生长动力学与计算机模拟. 物理学报, 1996, 45(4): 655-660. doi: 10.7498/aps.45.655
    [16] 徐秀英, 张杏奎, 冯端, 吕鹏. 六角片状包裹体双折射象与计算机模拟象. 物理学报, 1990, 39(3): 491-494. doi: 10.7498/aps.39.491
    [17] 石双合, 陈金昌, 王绪威. 非晶态Fe-P合金结构的计算机模拟(Ⅰ)——Fe75P25结构中的短程序. 物理学报, 1988, 37(11): 1849-1854. doi: 10.7498/aps.37.1849
    [18] 王绪威, 陈金昌, 石双合. 非晶态Fe-P合金结构的计算机模拟(Ⅱ)——Fe100-xPx结构与成分关系. 物理学报, 1988, 37(11): 1775-1784. doi: 10.7498/aps.37.1775
    [19] 孙宗琦. 振动弯结与可动点缺陷的交互作用所引起的反常内耗的计算机模拟. 物理学报, 1982, 31(5): 561-570. doi: 10.7498/aps.31.561
    [20] 韩福森, 范海福. Patterson图的电子计算机分析. 物理学报, 1981, 30(2): 224-233. doi: 10.7498/aps.30.224
计量
  • 文章访问数:  963
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 修回日期:  2023-10-31
  • 上网日期:  2023-11-17
  • 刊出日期:  2024-01-20

/

返回文章
返回