搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活性三嵌段共聚物的凝胶化转变

石子璇 金燕 金奕扬 田文得 张天辉 陈康

引用本文:
Citation:

活性三嵌段共聚物的凝胶化转变

石子璇, 金燕, 金奕扬, 田文得, 张天辉, 陈康

Gel transition of active triblock copolymers

Shi Zi-Xuan, Jin Yan, Jin Yi-Yang, Tian Wen-De, Zhang Tian-Hui, Chen Kang
PDF
HTML
导出引用
  • 活性物质的自推进特征引发了许多非平衡自组织现象, 而聚合物链的构象自由度可以使链产生独特的平衡自组装行为, 这激发了活性物质与聚合物物理的交叉研究. 本文通过分子动力学模拟, 研究了自驱动活性对ABA 型三嵌段共聚物凝胶化转变的调控. 研究结果表明活性嵌段共聚物凝胶的塌缩源于自驱动活性引起的网络链运动, 活性越大则凝胶网络越容易产生大直径空洞. 在凝胶网络的拓扑缺陷方面, 当A嵌段之间吸引强度较大时, 环链比例随活性力增强而增大, 吸引强度较小时情况则相反. 交联点的分支数随活性的变化除了受到吸引强度的影响, 还与链刚性有关. 在动力学方面, 活性聚合物的定向运动会引发稳定聚合物凝胶整体的反常扩散. 本文的研究有助于增进对活性聚合物集体行为的认识, 为高分子活性材料的设计和应用提供了新的思路.
    The self-propulsion of active matter leads to many non-equilibrium self-organization phenomena, and the conformational freedom of polymer chains can produce unique equilibrium self-assembly behaviors, which stimulates cross-disciplinary research between active matter and polymer physics. In this work, we use molecular dynamics simulations to investigate the modulation of self-propulsion activity on the gel transition of ABA triblock copolymers. The research results indicate that under different active forces and attractive strengths, the gel states formed by ABA copolymers can be divided into three types: stable polymer gels with stable percolation paths and uniform spatial distribution, dynamic polymer gels with constantly changing percolation path and strand conformation, and collapsed polymer gels aggregating into large percolating clusters. The spatial uniformity of active gels is related not only to the concentration fluctuation during the formation of the network, but also to the inconsistent movement of the network chains caused by the activity, which is manifested in the rotation of crosslinking points in the flexible system and the directional movement of the bundles along their contour directions in the semi-flexible and rigid systems. In terms of topological conformation of polymer networks, when the attractive strength between A blocks is strong, the proportion of loop increases with the active force increasing. When attractive strength is weak, inter- and intra-chain binding are unstable, and the conformation is easily changed by the activity drive, noise and other chain collisions, so the proportion of loop decreases with the active force increasing. The branching number of crosslinking points varies with active force, which is not only affected by the attraction strength, but also related to the rigidity of the network chain. Generally, the branch number of crosslinking points in semi-flexible networks is larger than that in flexible and rigid networks. In addition, the directional motion of active polymers induces anomalous diffusion in stable polymer gels. This study contributes to the understanding of the collective behavior of active polymers and serves as a guide for designing and implementing active polymeric materials.
      Corresponding author: Tian Wen-De, tianwende@suda.edu.cn ; Zhang Tian-Hui, zhangtianhui@suda.edu.cn ; Chen Kang, kangchen@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21774091, 21674078, 11974255).
    [1]

    Deseigne J, Dauchot O, Chaté H 2010 Phys. Rev. Lett. 105 098001Google Scholar

    [2]

    Vicsek T, Zafeiris A 2012 Phys. Rep. 517 71Google Scholar

    [3]

    Liu L, Shi G, Thirumalai D, Hyeon C 2018 PLoS Comput. Biol. 14 e1006617Google Scholar

    [4]

    Liu K, Patteson A E, Banigan E J, Schwarz J M 2021 Phys. Rev. Lett. 126 158101Google Scholar

    [5]

    Weber C A, Suzuki R, Schaller V, Aranson I S, Bausch A R, Frey E 2015 Proc. Natl. Acad. Sci. U. S. A. 112 10703Google Scholar

    [6]

    Kučera O, Gaillard J, Guérin C, Théry M, Blanchoin L 2022 Proc. Natl. Acad. Sci. U.S.A. 119 e2209522119Google Scholar

    [7]

    Li H, Shi X Q, Huang M, Chen X, Xiao M, Liu C, Chaté H, Zhang H P 2019 Proc. Natl. Acad. Sci. U. S. A. 116 777Google Scholar

    [8]

    Auer G K, Oliver P M, Rajendram M, Lin T Y, Yao Q, Jensen G J, Weibel D B 2019 mBio 10 00210Google Scholar

    [9]

    Selander E, Jakobsen H H, Lombard F, Kiørboe T 2011 Proc. Natl. Acad. Sci. U. S. A. 108 4030Google Scholar

    [10]

    Deblais A, Prathyusha K R, Sinaasappel R, Tuazon H, Tiwari I, Patil V P, Bhamla M S 2023 Soft Matter 19 7057Google Scholar

    [11]

    Nishiguchi D, Iwasawa J, Jiang H R, Sano M 2018 New J. Phys. 20 015002Google Scholar

    [12]

    Duman Ö, Isele-Holder R E, Elgeti J, Gompper G 2018 Soft Matter 14 4483Google Scholar

    [13]

    Ndlec F J, Surrey T, Maggs A C, Leibler S 1997 Nature 389 305Google Scholar

    [14]

    Schaller V, Weber C, Semmrich C, Frey E, Bausch A R 2010 Nature 467 73Google Scholar

    [15]

    Huber L, Suzuki R, Krüger T, Frey E, Bausch A R 2018 Science 361 255Google Scholar

    [16]

    Sanchez T, Chen D T N, DeCamp S J, Heymann M, Dogic Z 2012 Nature 491 431Google Scholar

    [17]

    Doostmohammadi A, Ignés-Mullol J, Yeomans J M, Sagués F 2018 Nat. Commun. 9 3246Google Scholar

    [18]

    Backouche F, Haviv L, Groswasser D, Bernheim-Groswasser A 2006 Phys. Biol. 3 264Google Scholar

    [19]

    Chew W X, Henkin G, Nédélec F, Surrey T 2023 iScience 26 106063Google Scholar

    [20]

    Faluweki M K, Goehring L 2022 J. R. Soc. Interface 19 20220268Google Scholar

    [21]

    Faluweki M K, Cammann J, Mazza M G, Goehring L 2023 Phys. Rev. Lett. 131 158303Google Scholar

    [22]

    Sugi T, Ito H, Nishimura M, Nagai K H 2019 Nat. Commun. 10 683Google Scholar

    [23]

    Li Y Q, Sun Z Y, Shi T F, An L J 2004 J. Chem. Phys. 121 1133Google Scholar

    [24]

    Tanaka F, Koga T 2001 BCSJ 74 201Google Scholar

    [25]

    Hu H X, Shen Y F, Wang C, Luo M B 2022 Soft Matter 18 8820Google Scholar

    [26]

    Han H, Joo S, Sakaue T, Jeon J H 2023 J. Chem. Phys. 159 024901Google Scholar

    [27]

    Jiao Y, Wang J, Tian W D, Chen K 2023 Soft Matter 19 5468Google Scholar

    [28]

    Bianco V, Locatelli E, Malgaretti P 2018 Phys. Rev. Lett. 121 217802Google Scholar

    [29]

    Gu Y, Zhao J, Johnson J A 2020 Angew. Chem. Int. Ed. 59 5022Google Scholar

    [30]

    Torquato S, Avellaneda M 1991 J. Chem. Phys. 95 6477Google Scholar

    [31]

    Agrawal S, Galmarini S, Kröger M 2023 Phys. Rev. E 107 015307Google Scholar

    [32]

    Hosono N, Masubuchi Y, Furukawa H, Watanabe T 2007 J. Chem. Phys. 127 164905Google Scholar

    [33]

    Pereyra R G, Al-Maadeed M A, Carignano M A 2017 Express Polym. Lett. 11 199Google Scholar

    [34]

    Di Lorenzo F, Seiffert S 2015 Polym. Chem. 6 5515Google Scholar

    [35]

    Anand S K, Singh S P 2018 Phys. Rev. E 98 042501Google Scholar

    [36]

    Head D A, Gompper G, Briels W J 2011 Soft Matter 7 3116Google Scholar

    [37]

    Córdoba A 2018 J. Phys. Chem. B 122 4267Google Scholar

    [38]

    Köhler S, Schaller V, Bausch A R 2011 Nat. Mater 10 462Google Scholar

  • 图 1  单体非键相互作用和活性力示意图, 红色圆形表示A单体, 蓝色圆形表示B单体, 中间嵌段的一些B单体在图中被省略

    Fig. 1.  Schematic diagram of non-bonding interactions and active forces of particles, with red circles representing type A monomers and blue circles representing type B monomers, some B monomers in the middle block are omitted in the diagram.

    图 2  柔性活性ABA嵌段共聚物的相图, 虚线是各种凝胶态和非凝胶态粗略的分界线, 左侧表示凝胶态, 右侧为非凝胶态

    Fig. 2.  Phase diagram of flexible active ABA block copolymer. The dotted line is the rough dividing line between the various gel states and non-gel states, with the left part representing the gel state and the right part representing the non-gel state.

    图 3  柔性活性ABA嵌段共聚物典型相的模拟快照 (a) 稳态聚合物凝胶; (b) 塌缩聚合物凝胶; (c) 团簇态; (d) 动态聚合物凝胶; (e) 熔融态; (f) 螺旋态

    Fig. 3.  Simulated snapshot of typical phase of flexible active ABA block copolymer: (a) Stable polymer gel; (b) collapsed polymer gel; (c) cluster state; (d) dynamic polymer gel; (e) melt state; (f) spiral state.

    图 4  (a) 参与逾渗的链的构象维持平均时间; (b) 参与逾渗的链数与总链数的比值随时间的变化

    Fig. 4.  (a) The average conformation maintenance time of the chain involved in percolation; (b) the ratio of the number of chains involved in percolation to the total number of chains varies over time.

    图 5  网络塌缩的演化过程, 黄色箭头表示局部位置的旋转方向 (a) $t = 200\tau $; (b) $t = 2000\tau $

    Fig. 5.  The evolution process of network collapse, with yellow arrows indicating the direction of rotation of the local network: (a) $t = 200\tau $; (b) $t = 2000\tau $.

    图 6  弱吸引和强吸引条件下, 凝胶的孔径分布 (a) $\varepsilon = 3$; (b) $\varepsilon = 7$

    Fig. 6.  The pore size distribution of the gel with weak and strong attraction strength: (a) $\varepsilon = 3$; (b) $\varepsilon = 7$.

    图 7  不同吸引强度下网络链三种构象的比例 (a) $\varepsilon = 7$; (b) $\varepsilon = 3$; (c)两种吸引强度的塌缩聚合物凝胶中, 环链比例随时间的变化

    Fig. 7.  The proportions of the three conformations of the network chain with different attraction strength: (a) $\varepsilon = 7$; (b) $\varepsilon = 3$; (c) the proportion of loop chains in two collapsed polymer gels with different attractive strengths as a function of time.

    图 8  当$\varepsilon = 3$时, 3种活性下 (a)交联点的分支数分布和(b)交联点的尺寸分布, 红色表示稳定聚合物凝胶, 黄色和绿色表示塌缩; 当$\varepsilon = 7$时, 3种活性下(c)交联点的分支数分布和(d)交联点的尺寸分布

    Fig. 8.  When $\varepsilon = 3$, (a) the distribution of the branch number and (b) the size distribution of the crosslinker under the three activities; when $\varepsilon = 7$, (c) the distribution of the branch number and (d) the size distribution of the crosslinker under the three activities

    图 9  (a)非活性网络和(b)活性网络整体质心的MSD; (c)活性网络中每条链质心的MSD, $\varepsilon = 10$

    Fig. 9.  MSD for the center of mass of the whole gel: (a) Passive gel, (b) active gel; (c) MSD for the center of mass of each chain in the active gel, $\varepsilon = 10$.

  • [1]

    Deseigne J, Dauchot O, Chaté H 2010 Phys. Rev. Lett. 105 098001Google Scholar

    [2]

    Vicsek T, Zafeiris A 2012 Phys. Rep. 517 71Google Scholar

    [3]

    Liu L, Shi G, Thirumalai D, Hyeon C 2018 PLoS Comput. Biol. 14 e1006617Google Scholar

    [4]

    Liu K, Patteson A E, Banigan E J, Schwarz J M 2021 Phys. Rev. Lett. 126 158101Google Scholar

    [5]

    Weber C A, Suzuki R, Schaller V, Aranson I S, Bausch A R, Frey E 2015 Proc. Natl. Acad. Sci. U. S. A. 112 10703Google Scholar

    [6]

    Kučera O, Gaillard J, Guérin C, Théry M, Blanchoin L 2022 Proc. Natl. Acad. Sci. U.S.A. 119 e2209522119Google Scholar

    [7]

    Li H, Shi X Q, Huang M, Chen X, Xiao M, Liu C, Chaté H, Zhang H P 2019 Proc. Natl. Acad. Sci. U. S. A. 116 777Google Scholar

    [8]

    Auer G K, Oliver P M, Rajendram M, Lin T Y, Yao Q, Jensen G J, Weibel D B 2019 mBio 10 00210Google Scholar

    [9]

    Selander E, Jakobsen H H, Lombard F, Kiørboe T 2011 Proc. Natl. Acad. Sci. U. S. A. 108 4030Google Scholar

    [10]

    Deblais A, Prathyusha K R, Sinaasappel R, Tuazon H, Tiwari I, Patil V P, Bhamla M S 2023 Soft Matter 19 7057Google Scholar

    [11]

    Nishiguchi D, Iwasawa J, Jiang H R, Sano M 2018 New J. Phys. 20 015002Google Scholar

    [12]

    Duman Ö, Isele-Holder R E, Elgeti J, Gompper G 2018 Soft Matter 14 4483Google Scholar

    [13]

    Ndlec F J, Surrey T, Maggs A C, Leibler S 1997 Nature 389 305Google Scholar

    [14]

    Schaller V, Weber C, Semmrich C, Frey E, Bausch A R 2010 Nature 467 73Google Scholar

    [15]

    Huber L, Suzuki R, Krüger T, Frey E, Bausch A R 2018 Science 361 255Google Scholar

    [16]

    Sanchez T, Chen D T N, DeCamp S J, Heymann M, Dogic Z 2012 Nature 491 431Google Scholar

    [17]

    Doostmohammadi A, Ignés-Mullol J, Yeomans J M, Sagués F 2018 Nat. Commun. 9 3246Google Scholar

    [18]

    Backouche F, Haviv L, Groswasser D, Bernheim-Groswasser A 2006 Phys. Biol. 3 264Google Scholar

    [19]

    Chew W X, Henkin G, Nédélec F, Surrey T 2023 iScience 26 106063Google Scholar

    [20]

    Faluweki M K, Goehring L 2022 J. R. Soc. Interface 19 20220268Google Scholar

    [21]

    Faluweki M K, Cammann J, Mazza M G, Goehring L 2023 Phys. Rev. Lett. 131 158303Google Scholar

    [22]

    Sugi T, Ito H, Nishimura M, Nagai K H 2019 Nat. Commun. 10 683Google Scholar

    [23]

    Li Y Q, Sun Z Y, Shi T F, An L J 2004 J. Chem. Phys. 121 1133Google Scholar

    [24]

    Tanaka F, Koga T 2001 BCSJ 74 201Google Scholar

    [25]

    Hu H X, Shen Y F, Wang C, Luo M B 2022 Soft Matter 18 8820Google Scholar

    [26]

    Han H, Joo S, Sakaue T, Jeon J H 2023 J. Chem. Phys. 159 024901Google Scholar

    [27]

    Jiao Y, Wang J, Tian W D, Chen K 2023 Soft Matter 19 5468Google Scholar

    [28]

    Bianco V, Locatelli E, Malgaretti P 2018 Phys. Rev. Lett. 121 217802Google Scholar

    [29]

    Gu Y, Zhao J, Johnson J A 2020 Angew. Chem. Int. Ed. 59 5022Google Scholar

    [30]

    Torquato S, Avellaneda M 1991 J. Chem. Phys. 95 6477Google Scholar

    [31]

    Agrawal S, Galmarini S, Kröger M 2023 Phys. Rev. E 107 015307Google Scholar

    [32]

    Hosono N, Masubuchi Y, Furukawa H, Watanabe T 2007 J. Chem. Phys. 127 164905Google Scholar

    [33]

    Pereyra R G, Al-Maadeed M A, Carignano M A 2017 Express Polym. Lett. 11 199Google Scholar

    [34]

    Di Lorenzo F, Seiffert S 2015 Polym. Chem. 6 5515Google Scholar

    [35]

    Anand S K, Singh S P 2018 Phys. Rev. E 98 042501Google Scholar

    [36]

    Head D A, Gompper G, Briels W J 2011 Soft Matter 7 3116Google Scholar

    [37]

    Córdoba A 2018 J. Phys. Chem. B 122 4267Google Scholar

    [38]

    Köhler S, Schaller V, Bausch A R 2011 Nat. Mater 10 462Google Scholar

  • [1] 金燕, 石子璇, 金奕扬, 田文得, 张天辉, 陈康. 有限多孔介质诱导活性哑铃的聚集行为. 物理学报, 2024, 73(16): 160502. doi: 10.7498/aps.73.20240784
    [2] 宁鲁慧, 张雪, 杨明成, 郑宁, 刘鹏, 彭毅. 活性浴中惰性粒子形状对有效作用力的影响. 物理学报, 2024, 73(15): 158202. doi: 10.7498/aps.73.20240650
    [3] 王晶, 焦阳, 田文得, 陈康. 低惯性与高惯性活性粒子混合体系中的相分离现象. 物理学报, 2023, 72(19): 190501. doi: 10.7498/aps.72.20230792
    [4] 高艺雯, 王影, 田文得, 陈康. 空间调制的驱动外场下活性聚合物的动力学行为. 物理学报, 2022, 71(24): 240501. doi: 10.7498/aps.71.20221367
    [5] 陈康, 沈煜年. 软体机器人用多孔聚合物水凝胶的摩擦接触非线性行为. 物理学报, 2021, 70(12): 120201. doi: 10.7498/aps.70.20202134
    [6] 仲颖, 施夏清. 自驱动杆状粒子在半柔性弹性环中的集体行为. 物理学报, 2020, 69(8): 080507. doi: 10.7498/aps.69.20200561
    [7] 严大东, 张兴华. 聚合物结晶理论进展. 物理学报, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [8] 范文亮, 孙敏娜, 张进军, 潘俊星, 郭宇琦, 李颖, 李春蓉, 王宝凤. 嵌段共聚物受限于接枝混合刷板间的相行为. 物理学报, 2016, 65(22): 226401. doi: 10.7498/aps.65.226401
    [9] 陈雷鸣. 干活性物质的动力学理论. 物理学报, 2016, 65(18): 186401. doi: 10.7498/aps.65.186401
    [10] 樊娟娟, 于秀玲, 梁雪梅. AB/CD嵌段共聚物共混体系多尺度结构的自洽场模拟. 物理学报, 2013, 62(15): 158105. doi: 10.7498/aps.62.158105
    [11] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响. 物理学报, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [12] 王豆豆, 王丽莉. 新型光学聚合物——Topas环烯烃共聚物微结构光纤的设计及特性分析. 物理学报, 2010, 59(5): 3255-3259. doi: 10.7498/aps.59.3255
    [13] 付东, 王学敏, 刘建岷. 超临界二氧化碳和模型共聚物的相平衡和成核性质研究. 物理学报, 2009, 58(5): 3022-3027. doi: 10.7498/aps.58.3022
    [14] 李 明, 诸跃进. 嵌段共聚物受限于软孔内的自组装. 物理学报, 2008, 57(12): 7555-7564. doi: 10.7498/aps.57.7555
    [15] 梁丽萍, 徐 耀, 张 磊, 吴 东, 孙予罕, 李志宏, 吴忠华. 溶胶-凝胶方法制备ZrO2及聚合物掺杂ZrO2单层光学增反射膜. 物理学报, 2006, 55(8): 4371-4382. doi: 10.7498/aps.55.4371
    [16] 蒋中英, 郁伟中, 夏元复. 三嵌段共聚物SEBS中自由体积行为的温度及e+辐照时间依赖性的研究. 物理学报, 2005, 54(7): 3434-3438. doi: 10.7498/aps.54.3434
    [17] 刘德胜, 王鹿霞, 陈延学, 韩圣浩, 解士杰, 梅良模. PA和PPP三嵌段共聚物的带电态研究. 物理学报, 2001, 50(9): 1763-1768. doi: 10.7498/aps.50.1763
    [18] 李子荣, 孟庆安, 管荻华, 王 刚. PAN为基凝胶聚合物电解质自扩散系数的NMR研究. 物理学报, 1999, 48(6): 1175-1178. doi: 10.7498/aps.48.1175
    [19] 李景德, 曹万强, 王勇. 聚合物慢极化的唯象理论. 物理学报, 1997, 46(5): 986-993. doi: 10.7498/aps.46.986
    [20] 严士健, 李占柄. 非平衡系统的概率模型及Master方程的建立. 物理学报, 1980, 29(2): 139-152. doi: 10.7498/aps.29.139
计量
  • 文章访问数:  1623
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 修回日期:  2024-07-06
  • 上网日期:  2024-07-31
  • 刊出日期:  2024-09-05

/

返回文章
返回