搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自驱动杆状粒子在半柔性弹性环中的集体行为

仲颖 施夏清

引用本文:
Citation:

自驱动杆状粒子在半柔性弹性环中的集体行为

仲颖, 施夏清

Collective behaviors of self-propelled rods under semi-flexible elastic confinement

Zhong Ying, Shi Xia-Qing
PDF
HTML
导出引用
  • 在生物体系的活性系统中, 杆状粒子在弹性半柔性边界中的受限行为极为常见. 本文研究了二维情况下, 自驱动杆状粒子受限在半柔性弹性环中的集体行为. 改变系统的粒子数及噪声强度, 系统显示明显的自驱吸附有序态、无序态及中间的过渡态. 通过表征弹性环内部粒子的径向极性大小和空间分布的非球度性对这些状态进行了刻画. 进一步对弹性环中心附近粒子密度的分析, 发现环中心气态粒子分布存在一个与边界高密度区域共存的饱和平台, 出现类似吸附转变的粒子分布. 在过渡区间, 体系内存在较大的涨落会导致弹性环出现异常形变. 非对称的粒子分布对弹性环整体的迁移具有重要贡献, 系统在过渡区间能获得相对较强的定向迁移.
    In biological active systems there commonly exist active rod-like particles under elastic confinement. Here in this work, we study the collective behavior of self-propelled rods confined in an elastic semi-flexible ring. By changing the density of particles and noise level in the system, It is clearly shown that the system has an ordered absorbing phase-separated state of self-propelled rods and the transition to a disordered state as well. The radial polar order parameter and asphericity parameter are characterized to distinguish these states. The results show that the gas density near the central region of the elastic confinement has a saturated gas density that co-exists with the absorbed liquid crystal state at the elastic boundary. In the crossover region, the system suffers an abnormal fluctuation that drives the deformation of the elastic ring. The non-symmetric distribution of particles in the transition region contributes significantly to the collective translocation of the elastic ring.
      通信作者: 施夏清, sxiaqing@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 11674236, 11922506)资助的课题
      Corresponding author: Shi Xia-Qing, sxiaqing@gmail.com
    [1]

    Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, Viale M 2010 Proc. Natl. Acad. Sci. U.S.A. 107 11865Google Scholar

    [2]

    Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V 2008 Proc. Natl. Acad. Sci. U.S.A. 105 1232Google Scholar

    [3]

    Makris N C, Ratilal P, Symonds D T, Jagannathan S, Lee S, Nero R W 2006 Science 311 660Google Scholar

    [4]

    Katz Y, Tunstrom K, Ioannou C C, Huepe C, Couzin I D 2011 Proc. Natl. Acad. Sci. U.S.A. 108 18720Google Scholar

    [5]

    Ginelli F, Peruani F, Pillot M H, Chate H, Theraulaz G, Bon R 2015 Proc. Natl. Acad. Sci. U.S.A. 112 12729Google Scholar

    [6]

    J.-C. Tsai, Fangfu Ye, Juan Rodriguez, J. P. Gollub, Lubensky T C 2005 Phys. Rev. Lett. 94 214301Google Scholar

    [7]

    Zhang H P, Be'er A, Florin E L, Swinney H L 2010 Proc. Natl. Acad. Sci. U.S.A. 107 13626Google Scholar

    [8]

    陈雷鸣 2016 物理学报 65 186401Google Scholar

    Chen L M 2016 Acta Phys. Sin. 65 186401Google Scholar

    [9]

    Fily Y, Marchetti M C 2012 Phys. Rev. Lett. 108 235702Google Scholar

    [10]

    Farrell F D, Marchetti M C, Marenduzzo D, Tailleur J 2012 Phys. Rev. Lett. 108 248101Google Scholar

    [11]

    Weitz S, Deutsch A, Peruani F 2015 Phys. Rev. E 92 012322

    [12]

    Abkenar M, Marx K, Auth T, Gompper G 2013 Phys. Rev. E 88 062314

    [13]

    Surrey T, Nedelec F, Leibler S, Karsenti E 2001 Science 292 1167Google Scholar

    [14]

    Deseigne J, Dauchot O, Chate H 2010 Phys. Rev. Lett. 105 098001Google Scholar

    [15]

    Bialke J, Speck T, Lowen H 2012 Phys. Rev. Lett. 108 168301Google Scholar

    [16]

    Wysocki A, Elgeti J, Gompper G 2015 Phys. Rev. E 91 050302Google Scholar

    [17]

    Costanzo A, Di Leonardo R, Ruocco G, Angelani L 2012 J. Phys. Condens. Matter 24 065101Google Scholar

    [18]

    Isele-Holder R E, Elgeti J, Gompper G 2015 Soft Matter 11 7181Google Scholar

    [19]

    Ginelli F, Peruani F, Bar M, Chate H 2010 Phys. Rev. Lett. 104 184502Google Scholar

    [20]

    Gao T, Blackwell R, Glaser M A, Betterton M D, Shelley M J 2015 Phys. Rev. Lett. 114 048101Google Scholar

    [21]

    Wensink H H, Lowen H 2012 J. Phys. Condens. Matter 24 464130Google Scholar

    [22]

    Ofer N, Mogilner A, Keren K 2011 Proc. Natl. Acad. Sci. U.S.A. 108 20394Google Scholar

    [23]

    Prass M, Jacobson K, Mogilner A, Radmacher M 2006 J. Cell Biol. 174 767Google Scholar

    [24]

    Weichsel J, Schwarz U S 2013 New J. Phys. 15 035006Google Scholar

    [25]

    Theriot J A, Mitchison T J, Tilney L G, Portnoy D A 1992 Nature 357 257Google Scholar

    [26]

    Pantaloni D 2001 Science 292 1502Google Scholar

    [27]

    Lushi E, Wioland H, Goldstein R E 2014 Proc. Natl. Acad. Sci. U.S.A. 111 9733Google Scholar

    [28]

    Wensink H H, Lowen H 2008 Phys. Rev. E 78 031409Google Scholar

    [29]

    Lee C F 2013 New J. Phys. 15 055007Google Scholar

    [30]

    Yang X, Manning M L, Marchetti M C 2014 Soft Matter 10 6477Google Scholar

    [31]

    Abaurrea Velasco C, Dehghani Ghahnaviyeh S, Nejat Pishkenari H, Auth T, Gompper G 2017 Soft Matter 13 5865Google Scholar

    [32]

    Tian W D, Gu Y, Guo Y K, Chen K 2017 Chin. Phys. B 26 100502Google Scholar

    [33]

    Paoluzzi M, Di Leonardo R, Marchetti M C, Angelani L 2016 Sci. Rep. 6 34146Google Scholar

    [34]

    Spellings M, Engel M, Klotsa D, Sabrina S, Drews A M, Nguyen N H, Bishop K J, Glotzer S C 2015 Proc. Natl. Acad. Sci. U.S.A. 112 E4642Google Scholar

    [35]

    Zhang R F, Ren C L, Feng J W, Ma Y Q 2019 Sci. China-Phys. Mech. Astron. 62 117012Google Scholar

    [36]

    Pesek J, Baerts P, Smeets B, Maes C, Ramon H 2016 Soft Matter 12 3360Google Scholar

    [37]

    Lober J, Ziebert F, Aranson I S 2014 Soft Matter 10 1365Google Scholar

    [38]

    Opathalage A, Norton M M, Juniper M P N, et al. 2019 PNAS 116 4788Google Scholar

    [39]

    Keber F C, Loiseau E, Sanchez T, et al. 2014 Science 345 1135Google Scholar

  • 图 1  (a)系统组成的示意图, 颜色代表杆身的取向; (b)杆间碰撞受力示意图

    Fig. 1.  (a) The schematic diagram of this system, and the rods are colored according to their angle with respect to the radial direction; (b) the interaction between rods.

    图 2  三种典型分布的快照, 自驱动杆粒子数${N_{\rm{r}}}$均为1500, 噪声大小$\eta $分别为0.10, 0.20和0.50, 依次对应 (a)自驱吸附有序态、(b)过渡态和(c)无序态. 粒子颜色代表取向, 同图1

    Fig. 2.  The snapshots of three regions with fixed particle number ${N_{\rm{r}}} = 1500$ for different noise levels, and, respectively, with (a) $\eta = 0.10$, self-propelled particle absorbed ordered region, (b) $\eta = 0.20$ transient region, and (c) $\eta = 0.50$ disordered phase. The color represents the radial direction as Fig.1.

    图 3  改变噪声强度$\eta $和弹性环中自驱动杆粒子数${N_{\rm{r}}}$得到的相图 (a)比较径向极性序参${S_{\rm{p}}}$大小得到的热力图; (b)比较非球度$\varDelta $大小得到的热力图, 其中转变区域具有极大值

    Fig. 3.  Phase diagrams for self-propelled rods in elastic-ring with varying the noise strength $\eta $ and the number of self-propelled rods ${N_{\rm{r}}}$, and the order parameter corresponding to (a) the radial polarity ${S_{\rm{P}}}$ and (b) the asphericity $\varDelta $. We have maximal asphericity $\varDelta $ in the transition region.

    图 4  (a)改变噪声强度$\eta $和自驱动杆粒子数${N_{\rm{r}}}$, 比较约化密度差P得到的热力图; (b)不同噪声强度$\eta $下, 弹性环中心附近粒子数密度随自驱动杆粒子数${N_{\rm{r}}}$的变化趋势

    Fig. 4.  (a) Phase diagram of the reduced density difference P for self-propelled rods with varying the noise strength $\eta $ and the number of self-propelled rods ${N_{\rm{r}}}$; (b) density of central particles, ${\psi _{{\rm{in}}}}$, versus the particle number ${N_{\rm{r}}}$ for different noise strength $\eta $.

    图 5  弹性环及杆状粒子质心均方位移随时间的变化 (a)粒子数${N_{\rm{r}}}$为1500时, 噪声大小$\eta $为0.10, 0.20和0.50所在三个区区域的比较; (b)粒子数${N_{\rm{r}}}$ = 1000, $\eta $为0.25, 0.30和0.50下无序态时的对比

    Fig. 5.  Mean-squared displacement(MSD)for the center of mass of particle and elastic ring: (a) Noise levels $\eta = 0.10$, $\eta = 0.20$, and $\eta = 0.50$ for ${N_{\rm{r}}} = 1500$; (b) noise levels for $\eta = 0.25$, $\eta = 0.30$, and $\eta = 0.50$ with particle number ${N_{\rm{r}}} = 1000$ in the disordered regime.

  • [1]

    Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, Viale M 2010 Proc. Natl. Acad. Sci. U.S.A. 107 11865Google Scholar

    [2]

    Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V 2008 Proc. Natl. Acad. Sci. U.S.A. 105 1232Google Scholar

    [3]

    Makris N C, Ratilal P, Symonds D T, Jagannathan S, Lee S, Nero R W 2006 Science 311 660Google Scholar

    [4]

    Katz Y, Tunstrom K, Ioannou C C, Huepe C, Couzin I D 2011 Proc. Natl. Acad. Sci. U.S.A. 108 18720Google Scholar

    [5]

    Ginelli F, Peruani F, Pillot M H, Chate H, Theraulaz G, Bon R 2015 Proc. Natl. Acad. Sci. U.S.A. 112 12729Google Scholar

    [6]

    J.-C. Tsai, Fangfu Ye, Juan Rodriguez, J. P. Gollub, Lubensky T C 2005 Phys. Rev. Lett. 94 214301Google Scholar

    [7]

    Zhang H P, Be'er A, Florin E L, Swinney H L 2010 Proc. Natl. Acad. Sci. U.S.A. 107 13626Google Scholar

    [8]

    陈雷鸣 2016 物理学报 65 186401Google Scholar

    Chen L M 2016 Acta Phys. Sin. 65 186401Google Scholar

    [9]

    Fily Y, Marchetti M C 2012 Phys. Rev. Lett. 108 235702Google Scholar

    [10]

    Farrell F D, Marchetti M C, Marenduzzo D, Tailleur J 2012 Phys. Rev. Lett. 108 248101Google Scholar

    [11]

    Weitz S, Deutsch A, Peruani F 2015 Phys. Rev. E 92 012322

    [12]

    Abkenar M, Marx K, Auth T, Gompper G 2013 Phys. Rev. E 88 062314

    [13]

    Surrey T, Nedelec F, Leibler S, Karsenti E 2001 Science 292 1167Google Scholar

    [14]

    Deseigne J, Dauchot O, Chate H 2010 Phys. Rev. Lett. 105 098001Google Scholar

    [15]

    Bialke J, Speck T, Lowen H 2012 Phys. Rev. Lett. 108 168301Google Scholar

    [16]

    Wysocki A, Elgeti J, Gompper G 2015 Phys. Rev. E 91 050302Google Scholar

    [17]

    Costanzo A, Di Leonardo R, Ruocco G, Angelani L 2012 J. Phys. Condens. Matter 24 065101Google Scholar

    [18]

    Isele-Holder R E, Elgeti J, Gompper G 2015 Soft Matter 11 7181Google Scholar

    [19]

    Ginelli F, Peruani F, Bar M, Chate H 2010 Phys. Rev. Lett. 104 184502Google Scholar

    [20]

    Gao T, Blackwell R, Glaser M A, Betterton M D, Shelley M J 2015 Phys. Rev. Lett. 114 048101Google Scholar

    [21]

    Wensink H H, Lowen H 2012 J. Phys. Condens. Matter 24 464130Google Scholar

    [22]

    Ofer N, Mogilner A, Keren K 2011 Proc. Natl. Acad. Sci. U.S.A. 108 20394Google Scholar

    [23]

    Prass M, Jacobson K, Mogilner A, Radmacher M 2006 J. Cell Biol. 174 767Google Scholar

    [24]

    Weichsel J, Schwarz U S 2013 New J. Phys. 15 035006Google Scholar

    [25]

    Theriot J A, Mitchison T J, Tilney L G, Portnoy D A 1992 Nature 357 257Google Scholar

    [26]

    Pantaloni D 2001 Science 292 1502Google Scholar

    [27]

    Lushi E, Wioland H, Goldstein R E 2014 Proc. Natl. Acad. Sci. U.S.A. 111 9733Google Scholar

    [28]

    Wensink H H, Lowen H 2008 Phys. Rev. E 78 031409Google Scholar

    [29]

    Lee C F 2013 New J. Phys. 15 055007Google Scholar

    [30]

    Yang X, Manning M L, Marchetti M C 2014 Soft Matter 10 6477Google Scholar

    [31]

    Abaurrea Velasco C, Dehghani Ghahnaviyeh S, Nejat Pishkenari H, Auth T, Gompper G 2017 Soft Matter 13 5865Google Scholar

    [32]

    Tian W D, Gu Y, Guo Y K, Chen K 2017 Chin. Phys. B 26 100502Google Scholar

    [33]

    Paoluzzi M, Di Leonardo R, Marchetti M C, Angelani L 2016 Sci. Rep. 6 34146Google Scholar

    [34]

    Spellings M, Engel M, Klotsa D, Sabrina S, Drews A M, Nguyen N H, Bishop K J, Glotzer S C 2015 Proc. Natl. Acad. Sci. U.S.A. 112 E4642Google Scholar

    [35]

    Zhang R F, Ren C L, Feng J W, Ma Y Q 2019 Sci. China-Phys. Mech. Astron. 62 117012Google Scholar

    [36]

    Pesek J, Baerts P, Smeets B, Maes C, Ramon H 2016 Soft Matter 12 3360Google Scholar

    [37]

    Lober J, Ziebert F, Aranson I S 2014 Soft Matter 10 1365Google Scholar

    [38]

    Opathalage A, Norton M M, Juniper M P N, et al. 2019 PNAS 116 4788Google Scholar

    [39]

    Keber F C, Loiseau E, Sanchez T, et al. 2014 Science 345 1135Google Scholar

  • [1] 李晨璞, 吴魏霞, 张礼刚, 胡金江, 谢革英, 郑志刚. 具有不同扩散系数的活性手征粒子分离. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240686
    [2] 金燕, 石子璇, 金奕扬, 田文得, 张天辉, 陈康. 有限多孔介质诱导活性哑铃的聚集行为. 物理学报, 2024, 73(16): 160502. doi: 10.7498/aps.73.20240784
    [3] 石子璇, 金燕, 金奕扬, 田文得, 张天辉, 陈康. 活性三嵌段共聚物的凝胶化转变. 物理学报, 2024, 73(17): 170501. doi: 10.7498/aps.73.20240796
    [4] 宁鲁慧, 张雪, 杨明成, 郑宁, 刘鹏, 彭毅. 活性浴中惰性粒子形状对有效作用力的影响. 物理学报, 2024, 73(15): 158202. doi: 10.7498/aps.73.20240650
    [5] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [6] 王晶, 焦阳, 田文得, 陈康. 低惯性与高惯性活性粒子混合体系中的相分离现象. 物理学报, 2023, 72(19): 190501. doi: 10.7498/aps.72.20230792
    [7] 高艺雯, 王影, 田文得, 陈康. 空间调制的驱动外场下活性聚合物的动力学行为. 物理学报, 2022, 71(24): 240501. doi: 10.7498/aps.71.20221367
    [8] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [9] 夏益祺, 谌庄琳, 郭永坤. 柔性棘轮在活性粒子浴内的自发定向转动. 物理学报, 2019, 68(16): 161101. doi: 10.7498/aps.68.20190425
    [10] 叶学民, 杨少东, 李春曦. 随活性剂浓度变化的分离压对垂直液膜排液过程的影响. 物理学报, 2017, 66(18): 184702. doi: 10.7498/aps.66.184702
    [11] 陈雷鸣. 干活性物质的动力学理论. 物理学报, 2016, 65(18): 186401. doi: 10.7498/aps.65.186401
    [12] 毛斌斌, 程晨, 陈富州, 罗洪刚. 一维扩展t-J模型中密度-自旋相互作用诱导的相分离. 物理学报, 2015, 64(18): 187105. doi: 10.7498/aps.64.187105
    [13] 包特木尔巴根, 杨兴强, 喻孜. 密度依赖口袋常数下奇异物质的热力学自洽处理及其对混合星性质的影响. 物理学报, 2013, 62(1): 012101. doi: 10.7498/aps.62.012101
    [14] 邹伯夏, 颜骏, 李季根. 黑洞背景下费米物质能量密度涨落的计算. 物理学报, 2010, 59(11): 7602-7606. doi: 10.7498/aps.59.7602
    [15] 翟 薇, 王 楠, 魏炳波. 偏晶溶液相分离过程的实时观测研究. 物理学报, 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [16] 邓茂林, 洪明潮, 朱位秋, 汪元美. 活性布朗粒子运动的稳态解. 物理学报, 2004, 53(7): 2029-2034. doi: 10.7498/aps.53.2029
    [17] 冯文强, 诸跃进. 外噪声场对二元混合物相分离的驱动作用. 物理学报, 2004, 53(11): 3690-3694. doi: 10.7498/aps.53.3690
    [18] 曹福广, 杨善德. 具有Gogny等效核力的有限核物质的饱和性质与液气相变. 物理学报, 1994, 43(5): 725-733. doi: 10.7498/aps.43.725
    [19] 曹福广, 杨善德. 具有Gogny等效核力的有限核物质的饱和性质与液气相变. 物理学报, 1993, 42(11): 1747-1755. doi: 10.7498/aps.42.1747
    [20] 王能平, 杨善德. 有限核物质的饱和性质与液气相变. 物理学报, 1992, 41(4): 561-567. doi: 10.7498/aps.41.561
计量
  • 文章访问数:  6270
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-16
  • 修回日期:  2020-04-18
  • 刊出日期:  2020-04-20

/

返回文章
返回