搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于490 nm垂直外腔面发射激光器的长距离水下激光通信系统

王涛 王章行 沈小雨 朱仁江 蒋丽丹 陆寰宇 路永乐 宋晏蓉 张鹏

引用本文:
Citation:

基于490 nm垂直外腔面发射激光器的长距离水下激光通信系统

王涛, 王章行, 沈小雨, 朱仁江, 蒋丽丹, 陆寰宇, 路永乐, 宋晏蓉, 张鹏

Long-range underwater wireless optical communication system based on 490 nm vertical-external-cavity surface-emitting laser

Wang Tao, Wang Zhang-Xing, Shen Xiao-Yu, Zhu Ren-Jiang, Jiang Li-Dan, Lu Huan-Yu, Lu Yong-Le, Song Yan-Rong, Zhang Peng
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 水下无线光通信技术为深海勘探和海洋资源开发利用带来了一种效率高且可靠性强的通信新方案. 本文采用490 nm垂直外腔面发射激光器作为光源, 基于声光外调制技术, 采用脉冲位置调制方式(pulse-position modulation, PPM)搭建了长距离水下无线光通信系统. 结合光源的优势并经过软判决算法优化PPM解调来提升水下通信性能, 采用64 PPM调制, 成功实现了96 m的水下传输距离, 在50 MHz时隙频率下得到传输的误码率为1.9 × 10–5. 同时测量到采用软判决解调相较于硬判决解调在性能增益上有着大约2 dB的提升, 验证了软判决算法在提升水下通信性能方面相比硬判决算法的显著优势.
    The exploration and utilization of marine resources has promoted the rapid development of marine science and technology, and has put forward higher requirements for underwater communication technology. Long distance underwater wireless optical communication (UWOC) requires the selection of light source on the transmitter side. Laser diodes (LDs) have excellent portability and maneuverability, and have been widely used in the UWOC systems. However, their beam quality is not so good and it is difficult to modulate under high power. In recent years, vertical-external-cavity surface-emitting laser (VECSEL) has received much attention due to its high output power and good beam quality. This work is to explore the advantages of using a 490-nm blue VECSEL as a light source in UWOC, and to improve the performance of the UWOC system by the soft-decision pulse-position modulation (PPM). First, the optical power attenuation coefficient of the channel is obtained, and the measured c is about 0.0591 m–1 in a 96-m-long tap channel. Subsequently, soft-decision and hard-decision are simulated and experimentally verified. Both simulations and measurements show that the bit error rate (BER) can be significantly reduced with soft-decision. Afterwards, we improve the system by using the soft-decision algorithm and investigate the communication performance of 64 PPMs at different bandwidths by adjusting the PPM signal rate. Finally, 50 MHz is chosen as a signal rate in the experiment. Then a UWOC system is demonstrated in this work. The transmitter side consists of a 490-nm VECSEL light source with an acousto-optic modulator (AOM). The pseudo-random binary sequence (PRBS) is loaded into the arbitrary waveform generator (AWG) for digital-to-analog conversion after PPM modulation, and the analog signal is sent to the driver of the AOM for acousto-optic modulation of the incident beam. The laser is focused before entering the AOM and then collimated after having exited to reduce its divergence. The modulated laser beam passes through a distance of 96 m in the tank by using multiple mirrors on both sides of the tank. Then, the beam is focused by a lens to the avalanche photodiode (APD) for photoelectric conversion in the end, and the signal is processed by a mixed signal oscilloscope (MSO) after data acquisition. A soft-decision algorithm is introduced to further optimize the performance of the PPM modulation. When the optical signal passes through a relatively long distance of 96 m, the measured BER is as low as 1.9 × 10–5. This indicates that the soft-decision PPM-based 490 nm blue VECSEL UWOC system performs very well.
      通信作者: 张鹏, zhangpeng2010@cqnu.edu.cn
    • 基金项目: 重庆市自然科学基金(批准号: CSTB2024NSCQ-MSX0833)、国家自然科学基金(批准号: 61975003, 61790584, 62025506)、重庆市教委科技研究计划(批准号: KJQN202200557, KJQN202300525)、在渝本科高校与中国科学院所属院所合作项目(批准号: HZ2021007)和重庆师范大学(人才引进/博士点)基金(批准号: 23XLB003)资助的课题.
      Corresponding author: Zhang Peng, zhangpeng2010@cqnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Chongqing, China (Grant No. CSTB2024NSCQ-MSX0833), the National Natural Science Foundation of China (Grant Nos. 61975003, 61790584, 62025506), the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJQN202200557, KJQN202300525), the Cooperation Project between Chongqing Local Universities and Institutions of Chinese Academy of Sciences, China (Grant No. HZ2021007), and the Chongqing Normal University Foundation (Talent Introduction/Doctoral Program), China (Grant No. 23XLB003).
    [1]

    Heidemann J, Stojanovic M, Zorzi M 2012 Philos. Trans. R. Soc. London, Ser. A 370 158

    [2]

    Tian P, Liu X, Yi S, Huang Y, Zhang S, Zhou X, Hu L, Zheng L, Liu R 2017 Opt. Express 25 1193Google Scholar

    [3]

    Kaushal H, Kaddoum G 2016 IEEE Access 4 1518Google Scholar

    [4]

    Saeed N, Celik A, Al-Naffouri T Y, Alouini M S 2019 Ad Hoc Networks 94 101935Google Scholar

    [5]

    Mobley C D, Gentili B, Gordon H R, Jin Z, Kattawar G W, Morel A, Reinersman P, Stamnes K, Stavn R H 1993 Appl. Opt. 32 7484Google Scholar

    [6]

    Bricaud A, Babin M, Morel A, Claustre H 1995 J. Geophys. Res. Oceans 100 13321Google Scholar

    [7]

    李军, 罗江华, 元秀华 2021 光学学报 41 0706005Google Scholar

    Li J, Luo J H, Yuan X H 2021 Acta Opt. Sin. 41 0706005Google Scholar

    [8]

    王宝鹏, 余锦, 王云哲, 孟晶晶, 貊泽强, 王金舵, 代守军, 何建国, 王晓东 2020 激光与光电子学进展 57 230604Google Scholar

    Wang B P, Yu J, Wang Y Z, Meng J J, Mo Ze Qiang, Wang J D, Dai S J, He J G, Wang X D 2020 Laser Optoelectron. P. 57 230604Google Scholar

    [9]

    Wu Z Y, Liu X Y, Wang J S, Wang J 2018 Opt. Lett. 43 4570Google Scholar

    [10]

    Ghassemlooy Z, Popoola W, Rajbhandari S 2019 Optical Wireless Communications: System and Channel Modelling with Matlab® (Boca Raton: CRC Press

    [11]

    Fei C, Wang Y, Du J, Chen R, Lv N, Zhang G, Tian J, Hong X, He S 2022 Opt. Express 30 2326Google Scholar

    [12]

    Qi Z, Wang L, Liu P, Bai M, Yu G, Wang Y 2023 Opt. Express 31 9330Google Scholar

    [13]

    Wang J, Lu C, Li S, Xu Z 2019 Opt. Express 27 12171Google Scholar

    [14]

    黄安, 殷洪玺, 季秀阳, 梁彦军, 文浩, 王建英, 沈众卫 2024 光学学报 44 0606002Google Scholar

    Huang A, Yin H X, Ji X Y, Liang Y J, Wen H, Wang J Y, Shen Z W 2024 Acta Opt. Sin. 44 0606002Google Scholar

    [15]

    Shen J, Wang J, Yu C, Chen X, Wu J, Zhao M, Qu F, Xu Z, Han J, Xu J 2019 Opt. Commun. 438 78Google Scholar

    [16]

    Yan Q R, Wang M, Dai W H, Wang Y H 2021 Opt. Commun. 495 127024Google Scholar

    [17]

    Han X T, Li P, Li G Y, Chang C, Jia S W, Xie Z, Liao P X, Nie W C, Xie X P 2023 Photonics 10 451Google Scholar

    [18]

    Bossert M, Schulz R, Bitzer S 2022 IEEE Trans. Inf. Theory 68 7107Google Scholar

    [19]

    Zhang C, Zhang Y, Tong Z, Zou H, Zhang H, Zhang Z, Lin G, Xu J 2022 Opt. Express 30 38663Google Scholar

    [20]

    Hu S, Mi L, Zhou T, Chen W 2018 Opt. Express 26 21685Google Scholar

    [21]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phys. D: Appl. Phys. 50 383001

    [22]

    Rahimi-Iman A 2016 J. Opt. 18 093003Google Scholar

    [23]

    Rudin B, Rutz A, Hoffmann M, Maas D J, Bellancourt A R, Gini E, Südmeyer T, Keller U 2008 Opt. Lett. 33 2719Google Scholar

    [24]

    Heinen B, Wang T L, Sparenberg M, Weber A, Kunert B, Hader J, Koch S W, Moloney J V, Koch M, Stolz W 2012 Electron. Lett. 48 11Google Scholar

    [25]

    Yan R, Zhu R, Wu Y, Wang T, Jiang L, Lu H, Song Y, Zhang P 2023 Appl. Phys. Lett. 123 011106Google Scholar

  • 图 1  各波长的光在海水中的吸收系数[6]

    Fig. 1.  The absorption coefficients of light of different wavelengths in seawater[6].

    图 2  蓝光VECSEL的长距离UWOC系统示意图 (a) VECSELS实物图; (b) 光路反射镜; (c) 水箱; (d) 接收装置

    Fig. 2.  Schematic diagram of the long-range UWOC system with blue VECSEL: (a) Physical diagram of VECSEL; (b) optical path reflector; (c) water tank; (d) receiver device.

    图 3  VECSEL光源直腔结构图

    Fig. 3.  Structure of straight cavity of VECSEL.

    图 4  VECSEL的基频光与倍频光光谱图

    Fig. 4.  Spectrogram of fundamental frequency light and frequency-doubled light of VECSEL.

    图 5  VECSEL的$M^2$因子测量图及功率曲线

    Fig. 5.  $M^2$ factor measurement plot and power curve of VECSEL.

    图 6  (a) 硬判决原理图; (b) 软判决原理图

    Fig. 6.  (a) Hard judgment schematic; (b) soft judgment schematic.

    图 7  曲线拟合96 m处功率衰减系数

    Fig. 7.  Curve fitting power attenuation coefficient at 96 m.

    图 8  不同调制阶数的误码率仿真

    Fig. 8.  BER simulation of different modulation orders.

    图 9  硬判决与软判决误码率仿真

    Fig. 9.  BER simulation of hard and soft decision.

    图 10  基于64 PPM的硬判决与软判决实验误码率比较

    Fig. 10.  BER plot of 64 PPM based hard and soft judgment experiments.

    图 11  64 PPM在不同带宽频率下的误码率与接收光功率的关系

    Fig. 11.  BER of 64 PPM at different bandwidth frequencies.

  • [1]

    Heidemann J, Stojanovic M, Zorzi M 2012 Philos. Trans. R. Soc. London, Ser. A 370 158

    [2]

    Tian P, Liu X, Yi S, Huang Y, Zhang S, Zhou X, Hu L, Zheng L, Liu R 2017 Opt. Express 25 1193Google Scholar

    [3]

    Kaushal H, Kaddoum G 2016 IEEE Access 4 1518Google Scholar

    [4]

    Saeed N, Celik A, Al-Naffouri T Y, Alouini M S 2019 Ad Hoc Networks 94 101935Google Scholar

    [5]

    Mobley C D, Gentili B, Gordon H R, Jin Z, Kattawar G W, Morel A, Reinersman P, Stamnes K, Stavn R H 1993 Appl. Opt. 32 7484Google Scholar

    [6]

    Bricaud A, Babin M, Morel A, Claustre H 1995 J. Geophys. Res. Oceans 100 13321Google Scholar

    [7]

    李军, 罗江华, 元秀华 2021 光学学报 41 0706005Google Scholar

    Li J, Luo J H, Yuan X H 2021 Acta Opt. Sin. 41 0706005Google Scholar

    [8]

    王宝鹏, 余锦, 王云哲, 孟晶晶, 貊泽强, 王金舵, 代守军, 何建国, 王晓东 2020 激光与光电子学进展 57 230604Google Scholar

    Wang B P, Yu J, Wang Y Z, Meng J J, Mo Ze Qiang, Wang J D, Dai S J, He J G, Wang X D 2020 Laser Optoelectron. P. 57 230604Google Scholar

    [9]

    Wu Z Y, Liu X Y, Wang J S, Wang J 2018 Opt. Lett. 43 4570Google Scholar

    [10]

    Ghassemlooy Z, Popoola W, Rajbhandari S 2019 Optical Wireless Communications: System and Channel Modelling with Matlab® (Boca Raton: CRC Press

    [11]

    Fei C, Wang Y, Du J, Chen R, Lv N, Zhang G, Tian J, Hong X, He S 2022 Opt. Express 30 2326Google Scholar

    [12]

    Qi Z, Wang L, Liu P, Bai M, Yu G, Wang Y 2023 Opt. Express 31 9330Google Scholar

    [13]

    Wang J, Lu C, Li S, Xu Z 2019 Opt. Express 27 12171Google Scholar

    [14]

    黄安, 殷洪玺, 季秀阳, 梁彦军, 文浩, 王建英, 沈众卫 2024 光学学报 44 0606002Google Scholar

    Huang A, Yin H X, Ji X Y, Liang Y J, Wen H, Wang J Y, Shen Z W 2024 Acta Opt. Sin. 44 0606002Google Scholar

    [15]

    Shen J, Wang J, Yu C, Chen X, Wu J, Zhao M, Qu F, Xu Z, Han J, Xu J 2019 Opt. Commun. 438 78Google Scholar

    [16]

    Yan Q R, Wang M, Dai W H, Wang Y H 2021 Opt. Commun. 495 127024Google Scholar

    [17]

    Han X T, Li P, Li G Y, Chang C, Jia S W, Xie Z, Liao P X, Nie W C, Xie X P 2023 Photonics 10 451Google Scholar

    [18]

    Bossert M, Schulz R, Bitzer S 2022 IEEE Trans. Inf. Theory 68 7107Google Scholar

    [19]

    Zhang C, Zhang Y, Tong Z, Zou H, Zhang H, Zhang Z, Lin G, Xu J 2022 Opt. Express 30 38663Google Scholar

    [20]

    Hu S, Mi L, Zhou T, Chen W 2018 Opt. Express 26 21685Google Scholar

    [21]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phys. D: Appl. Phys. 50 383001

    [22]

    Rahimi-Iman A 2016 J. Opt. 18 093003Google Scholar

    [23]

    Rudin B, Rutz A, Hoffmann M, Maas D J, Bellancourt A R, Gini E, Südmeyer T, Keller U 2008 Opt. Lett. 33 2719Google Scholar

    [24]

    Heinen B, Wang T L, Sparenberg M, Weber A, Kunert B, Hader J, Koch S W, Moloney J V, Koch M, Stolz W 2012 Electron. Lett. 48 11Google Scholar

    [25]

    Yan R, Zhu R, Wu Y, Wang T, Jiang L, Lu H, Song Y, Zhang P 2023 Appl. Phys. Lett. 123 011106Google Scholar

  • [1] 卫祎昕, 杨昌钢, 卫阿敏, 张国峰, 秦成兵, 陈瑞云, 胡建勇, 肖连团, 贾锁堂. 水下无线光通信物理层安全性研究. 物理学报, 2025, 74(6): . doi: 10.7498/aps.74.20241547
    [2] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [3] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [4] 秦璐, 任杰, 许兴胜. 垂直腔面发射激光器低温光电特性. 物理学报, 2019, 68(19): 194203. doi: 10.7498/aps.68.20190427
    [5] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉. 双波长外腔面发射激光器. 物理学报, 2019, 68(11): 114204. doi: 10.7498/aps.68.20182261
    [6] 贺锋涛, 杜迎, 张建磊, 房伟, 李碧丽, 朱云周. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究. 物理学报, 2019, 68(16): 164206. doi: 10.7498/aps.68.20190452
    [7] 王云, 蓝天, 李湘, 沈振民, 倪国强. 复合抛物面聚光器作为可见光通信光学天线的设计研究与性能分析. 物理学报, 2015, 64(12): 124212. doi: 10.7498/aps.64.124212
    [8] 钟东洲, 计永强, 邓涛, 周开利. 电光调制对外部光注入垂直腔表面发射激光器的偏振转换及其非线性动力学行为的操控性研究. 物理学报, 2015, 64(11): 114203. doi: 10.7498/aps.64.114203
    [9] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 物理学报, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [10] 刘浩杰, 蓝天, 倪国强. 室内可见光通信发光二极管阵列发射性能的研究. 物理学报, 2014, 63(23): 238503. doi: 10.7498/aps.63.238503
    [11] 赵艳梅, 夏光琼, 吴加贵, 吴正茂. 基于1550 nm垂直腔面发射激光器的长距离双向双信道光纤混沌保密通信研究. 物理学报, 2013, 62(21): 214206. doi: 10.7498/aps.62.214206
    [12] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [13] 朱思峰, 刘芳, 柴争义, 戚玉涛, 吴建设. 简谐振子免疫优化算法求解异构无线网络垂直切换判决问题. 物理学报, 2012, 61(9): 096401. doi: 10.7498/aps.61.096401
    [14] 钟东洲, 吴正茂. 电光调制对外部光反馈垂直腔表面发射激光器输出矢量混沌偏振的操控. 物理学报, 2012, 61(3): 034203. doi: 10.7498/aps.61.034203
    [15] 李硕, 关宝璐, 史国柱, 郭霞. 亚波长光栅调制的偏振稳定垂直腔面发射激光器研究. 物理学报, 2012, 61(18): 184208. doi: 10.7498/aps.61.184208
    [16] 郭东明, 杨玲珍, 王安帮, 张秀娟, 王云才. 反馈强度调制增强混沌光通信的保密性. 物理学报, 2009, 58(12): 8275-8280. doi: 10.7498/aps.58.8275
    [17] 王同喜, 关宝璐, 郭霞, 沈光地. 载流子输运和寄生参数对隧道再生双有源区垂直腔面发射激光器调制特性的影响. 物理学报, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [18] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器. 物理学报, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
    [19] 李孝峰, 潘 炜, 马 冬, 罗 斌, 张伟利, 熊 悦. 激光器自发辐射噪声对混沌光通信系统的影响. 物理学报, 2006, 55(10): 5094-5104. doi: 10.7498/aps.55.5094
    [20] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
计量
  • 文章访问数:  1975
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 修回日期:  2024-07-31
  • 上网日期:  2024-08-07
  • 刊出日期:  2024-09-05

/

返回文章
返回