搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NWC人工甚低频台站信号产生“条缕状”准捕获电子能谱的模拟研究

刘阳希子 项正 周晨 倪彬彬 董俊虎 胡景乐 王建行 郭浩智

引用本文:
Citation:

NWC人工甚低频台站信号产生“条缕状”准捕获电子能谱的模拟研究

刘阳希子, 项正, 周晨, 倪彬彬, 董俊虎, 胡景乐, 王建行, 郭浩智

Simulation Study on "Wisp" Electron Spectra Generated by NWC Very Low Frequency Transmitter Signals

Liu Yang-Xi-Zi, Xiang Zheng, Zhou Chen, Ni Bin-Bin, Dong Jun-Hu, Hu Jing-Le, Wang Jian-Hang, Guo Hao-Zhi
PDF
导出引用
  • 遍布全球的人工甚低频台站发射的信号主要用于对潜通信,在夜间这些信号可以泄漏进磁层与内辐射带中百keV电子发生回旋共振从而导致电子沉降。这一过程是导致内辐射带电子损失的重要原因,也是磁层-电离层耦合过程中能量和物质输运的重要环节。被台站信号散射的电子呈现出能量随L增加而减小的“条缕状”能谱结构,与台站信号和电子的一阶回旋共振能量曲线相符。低轨卫星可以对“条缕状”能谱结构进行清晰地观测,为研究近地空间波粒相互作用提供了重要契机。本文基于Drift-Diffusion-Source模型,复现了DEMETER卫星于2009年3月19日多个轨道测量的NWC台站信号导致的“条缕状”能谱,量化了NWC台站信号对辐射带电子的散射作用,明晰了NWC台站信号的幅度和传播角,揭示了内辐射带电子漂移过程中的动态变化规律,为开发人工影响辐射带技术提供了重要理论参考。
    Very low frequency signals emitted by worldwide spread ground-based man-made transmitters, which primarily propagate within Earth-ionospheric waveguides, are used for submarine communication. A portion of these signals penetrates the ionosphere and leaks into the magnetosphere when the ionospheric electron density decrease on the nightside due to the attenuated sunlit. VLF transmitter signals in the magnetosphere can scatter electrons in the inner radiation belt at energies of 100s keV into the drift loss cone through cyclotron resonance, which is an important loss mechanism for electrons in the inner radiation belt, and also playing an important role in transferring energy and mass from magnetosphere to ionosphere. Electrons scattered by transmitter signals exhibit “wisp” signature in L-Ek spectrum, satisfying the first-order cyclotron resonance relationship between electrons and the transmitter signals. The “wisp” spectrum can be clearly observed by Low Earth Orbit satellites, offering opportunities to study wave-particle interactions in near-Earth space. In this study, using the Drift-Diffusion-Source model, we reproduce the “wisp” spectrum formed by scattering effects of NWC transmitter signals observed by DEMETER satellite on March 19, 2009. Our simulation results suggest that the equatorial pitch angle of electrons observed by DEMETER varies with the longitude, resulting in distinctions in the observed “wisp” spectrum along different longitudes. Specifically, as the satellite approaches South Atlantic Anomaly (SAA) region, both the energy range and flux level of the observed “wisp” spectrum gradually increase. When using the wave normal angle model (the central wave normal angle is 60°) and the background electron density model from previous studies, the energy range of the simulated “wisp” spectra is higher than the observations. Adjusting the central wave normal angle to 40° or increasing the background density by a factor of 1.3, the simulated results agree well with the observations. Our results clarify the scattering effect of NWC transmitter signals on electrons in the radiation belt, and underscore the importance of analyzing the formation of “wisp” spectrum for understanding wave-particle interactions in near-earth space. Additionally, the Drift-Diffusion-Source model can be used to study wave-particle interactions in the inner radiation belt, providing an important basis for developing radiation belt remediation technology.
  • [1]

    Baker D N, Kanekal S G, Hoxie V C, Henderson M G, Li X, Spence H E, Elkington S R, Friedel R H W, Goldstein J, Hudson M K, Reeves G D, Thorne R M, Kletzing C A, Claudepierre S G 2013 Science 340 186

    [2]

    Dong J, Xiang Z, Ni B, Liu Y 2023 J. Geophys. Res. Space Physics 128 e2023JA031869

    [3]

    Guo D, Xiang Z, Ni B, Cao X, Fu S, Zhou R, Gu X, Yi J, Guo Y, Jiao L 2021 Geophys. Res. Lett. 48 e2021GL095714

    [4]

    Guo D, Xiang Z, Ni B, Jin T, Zhou R, Yi J, Liu Y, Dong J 2023 J. Geophys. Res. Space Physics 128 e2023JA031407

    [5]

    Tang C L, Xie X J, Ni B, Su Z P, Reeves G D, Zhang J C, Baker D N, Spence H E, Funsten H O, Blake J B, Wygant J R, Dai G Y 2018 J. Geophys. Res. Space Physics 123 4895

    [6]

    Yang X, Ni B, Yu J, Zhang Y, Zhang X, Sun Y 2017 J. Geophys. Res. Space Physics 122 6255

    [7]

    Zhu Q, Cao X, Gu X, Ni B, Xiang Z, Fu S, Summers D, Hua M, Lou Y, Ma X, Guo Y, Guo D, Zhang W 2021 J. Geophys. Res. Space Physics 126 e2020JA029057

    [8]

    Cao X, Lu P, Zhu Q, Ma X, Ni B B 2023 Chin. J. Geophys. 66 1796 (in Chinese) [曹兴, 陆鹏, 朱琪, 马新, 倪彬彬 2023 地球物理学报 66 1796]

    [9]

    Carlsten B E, Colestock P L, Cunningham G S, Delzanno G L, Dors E E, Holloway M A, Jeffery C A, Lewellen J W, Marksteiner Q R, Nguyen D C, Reeves G D, Shipman K A 2019 IEEE Trans. Plasma Sci. 47 2045

    [10]

    Golkowski M, Harid V, Hosseini P 2019 Front. Astron. Space Sci. 6 2

    [11]

    Johnston W R, Ginet G P, Starks M J, McCollough J P, Sanchez J C, Song P, Galkin I A, Inan U S, Lauben D S, Tu J, Reinisch B W, Linscott I R, Roche K, Stelmash S, Allgeier S, Lambour R, Schoenberg J, Gillespie W, Farrell W M, Xapsos M A, Roddy P A, Lindstrom C D, Pedinotti G F, Huston S L, Albert J M, Sinclair A J, Davis L D, Carilli J A, Cooke D L, Parker C W 2023 J. Geophys. Res. Space Physics 128 e2022JA030771

    [12]

    Claudepierre S G, Ma Q, Bortnik J, O'Brien T P, Fennell J F, Blake J B 2020 Geophys. Res. Lett. 47 e2019GL086056

    [13]

    Hua M, Li W, Ni B, Ma, Q., Green, A., Shen, X., Claudepierre S G, Bortnik J, Gu X, Fu S, Xiang Z, Reeves G D 2020 Nat. Commun. 11 4847

    [14]

    Hua M, Bortnik J, Ma Q, Bernhardt P A 2022 Geophys. Res. Lett. 49 e2022GL099258

    [15]

    Ni B, Hua M, Gu X, Fu S, Xiang Z, Cao X, Ma X 2022 Sci. China Earth Sci. 65 391

    [16]

    Ni B, Summers D, Xiang Z, Dou, X, Tsurutani B T, Meredith N P, Dong J, Chen L, Reeves G D, Liu X, Tao X, Gu X, Ma X, Yi J, Fu S, Xu W 2023 J. Geophys. Res. Space Physics 128 e2023JA031325

    [17]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2385

    [18]

    Albert J M, Starks M J, Selesnick R S, Ling A G, O'Malley S, Quinn R A 2020 J. Geophys. Res. Space Physics 125 e2019JA027030

    [19]

    Graf K L, Inan U S, Piddyachiy D, Kulkarni P, Parrot M, Sauvaud J A 2009 J. Geophys. Res. Space Physics 114 A07205

    [20]

    Imhof W L, Reagan J B, Voss H D, Gaines E E, Datlowe D W, Mobilia J, Helliwell R A, Inan U S, Katsufrakis J, Joiner R G 1983 Geophys. Res. Lett. 10 361

    [21]

    Koons H C, Edgar B C, Vampola A L 1981 J. Geophys. Res. Space Physics 86 640

    [22]

    Li L Y, Wang Z Y, Yu J, Cao J B 2021 J. Geophys. Res. Space Physics 126 e2020JA028879

    [23]

    Clilverd M A, Rodger C J, Gamble R, Meredith N P, Parrot M, Berthelier J-J, Thomson N R 2008 J. Geophys. Res. Space Physics 113 A04211

    [24]

    Wang Y L, Xiang Z, Zeren Z M, Ni B B, Liu Y X Z, Zhang X M, Ouyang X Y, Wu Y Y, Shen X H 2023 Chin. J. Geophys. 66 4451 (in Chinese) [王亚璐, 项正, 泽仁志玛, 倪彬彬, 刘阳希子, 张学民, 欧阳新艳, 吴迎燕, 申旭辉 2023 地球物理学报 66 4451]

    [25]

    Ma Q, Mourenas D, Li W, Artemyev A, Thorne R M 2017 Geophys. Res. Lett. 44 6483

    [26]

    Ma Q, Gu W, Claudepierre S G, Li W, Bortnik J, Hua M, Shen X C 2022 J. Geophys. Res.Space Physics 127 e2022JA030349

    [27]

    Meredith N P, Horne R B, Clilverd M A, Ross J P J 2019 J. Geophys. Res. Space Physics 124 5246

    [28]

    Ross J P J, Meredith N P, Glauert S A, Horne R B, Clilverd M A 2019 J. Geophys. Res. Space Physics 124 5260

    [29]

    Wang Y L, Zhang X M, Shen X H 2018 Earth Planet. Phys. 2 538

    [30]

    Xiang Z, Lin X H, Chen W, Wang Y, Lu P, Gong W Y, Ma W C, Hua M, Liu Y X Z 2021 Chin. J. Geophys. 64 3860 (in Chinese) [项正, 林显浩, 陈薇, 王勇, 陆鹏, 龚文颖, 马文琛, 花漫, 刘阳希子 2021 地球物理学报 64 3860]

    [31]

    Sauvaud J-A, Maggiolo R, Jacquey C, Parrot M, Berthelier J-J, Gamble R J, Rodger C J 2008 Geophys. Res. Lett. 35 L09101

    [32]

    Gamble R J, Rodger C J, Clilverd M A, Sauvaud J-A, Thomson N R, Stewart S L, McCormick R J, Parrot M, Berthelier J-J 2008 J. Geophys. Res. Space Physics 113 A10211

    [33]

    Li X, Ma Y, Wang P, Wang H, Lu H, Zhang X, Huang J, Shi F, Yu X, Xu Y, Meng X, Wang H, Zhao X, Parrot M 2012 J. Geophys. Res. Space Physics 117 A04201

    [34]

    Vampola A L, Kuck G A 1978 J. Geophys. Res. Space Physics 83 2543

    [35]

    Selesnick R S, Albert J M, Starks M J 2013 J. Geophys. Res. Space Physics 118 628

    [36]

    Liu Y, Xiang Z, Ni B, Li X, Zhang K, Fu S, Gu X, Liu J, Cao X 2022 Geophys. Res. Lett. 49 e2021GL097443

    [37]

    Parrot M 2006 Planet. Space Sci. 54 411

    [38]

    Sauvaud J A, Moreau T, Maggiolo R, Treilhou J P, Jacquey C, Cros A, Coutelier J, Rouzaud J, Penou E, Gangloff M 2006 Planet. Space Sci. 54 502

    [39]

    Li X, Schiller Q, Blum L, Califf S, Zhao H, Tu W, Turner D L, Gerhardt D, Palo S, Kanekal S, Baker D N, Fennell J, Blake J B, Looper M, Reeves G D, Spence H 2013 J. Geophys. Res. Space Physics 118 6489

    [40]

    Tu W, Selesnick R, Li X, Looper M 2010 J. Geophys. Res. Space Physics 115 A07210

    [41]

    Hu J, Xiang Z, Ma X, Liu Y, Dong J, Guo D, Ni B 2024 Space Weather 22 e2023SW003827

    [42]

    Zhang K, Li X, Xiang Z, Khoo L Y, Zhao H, Looper M D, Schiller Q, Temerin M A, Sauvaud J A 2020 J. Geophys. Res. Space Physics 125 e2020JA028086

    [43]

    Hu L F, Xiang Z, Gu X D, Ni B B, Zhang X X, Guo J G, Zhang X G, Zhu C B, Guo D Y, Fu S, Liu Y X Z, Dong J H, Zhao Y W 2023 Chin. J. Geophys. 66 2252 (in Chinese) [胡立凡, 项正, 顾旭东, 倪彬彬, 张效信, 郭建广, 张贤国, 朱昌波, 郭德宇, 付松, 刘阳希子, 董俊虎, 赵怡雯 2023 地球物理学报66 2252]

    [44]

    Ni B, Thorne R M, Shprits Y Y, Bortnik J 2008 Geophys. Res. Lett. 35 L11106

    [45]

    Ni B, Thorne R M, Meredith N P, Shprits Y Y, Horne R B 2011 J. Geophys. Res. Space Physics 116 A10207

    [46]

    Zhang Z, Chen L, Li X, Xia Z, Heelis R A, Horne R B 2018 J. Geophys. Res. Space Physics 123 5528

    [47]

    Gu W, Chen L, Xia Z, Horne R B 2021 Geophys. Res. Lett. 48 e2021GL093987

    [48]

    Ozhogin P, Tu J, Song P, Reinisch B W 2012 J. Geophys. Res.Space Physics 117 A06225

    [49]

    Liu Y X Z, Xiang Z, Guo J G, Gu X D, Fu S, Zhou R X, Hua M, Zhu Q, Yi J, Ni B B 2021 Acta Phys. Sin. 70 149401 [刘阳希子, 项正, 郭建广, 顾旭东, 付松, 周若贤, 花漫, 朱琪, 易娟, 倪彬彬2021 物理学报70 149401]

    [50]

    Xiang Z, Li X, Temerin M A, Ni B, Zhao H, Zhang K, Khoo L Y 2020a J. Geophys. Res. Space Physics 125 e2019JA027678

    [51]

    Li X, Selesnick R, Schiller Q, Zhang K, Zhao H, Baker D N, Temerin M A 2017 Nature 552 382

    [52]

    Xiang Z, Li X, Selesnick R, Temerin M A, Ni B, Zhao H, Zhang K, Khoo L Y 2019 Geophys. Res. Lett. 46 1919

    [53]

    Xiang Z, Li X, Ni B, Temerin M A, Zhao H, Zhang K, Khoo L Y 2020b J. Geophys. Res. Space Physics 125 e2020JA028042

    [54]

    Selesnick R S 2015 J. Geophys. Res. Space Physics 120 2912

    [55]

    Selesnick R S 2012 J. Geophys. Res. Space Physics 117 A08218

    [56]

    Reidy J A, Horne R B, Glauert S A, Clilverd M A, Meredith N P, Rodger C J, Ross J P, Wong J 2024 J. Geophys. Res. Space Physics 129 e2023JA031641

  • [1] 王敬之, 马新, 项正, 顾旭东, 焦鹿怀, 雷良建, 倪彬彬. 等离子体层嘶声波对辐射带电子投掷角散射系数的多维建模. 物理学报, doi: 10.7498/aps.71.20220655
    [2] 刘阳希子, 项正, 郭建广, 顾旭东, 付松, 周若贤, 花漫, 朱琪, 易娟, 倪彬彬. 甚低频台站信号对地球内辐射带和槽区能量电子的散射效应分析. 物理学报, doi: 10.7498/aps.70.20202029
    [3] 杨巨涛, 李清亮, 王建国, 郝书吉, 潘威炎. 双频双波束加热电离层激发甚低频/极低频辐射理论分析. 物理学报, doi: 10.7498/aps.66.019401
    [4] 罗旭东, 牛胜利, 左应红. 典型甚低频电磁波对辐射带高能电子的散射损失效应. 物理学报, doi: 10.7498/aps.64.069401
    [5] 常珊珊, 倪彬彬, 赵正予, 汪枫, 李金星, 赵晶晶, 顾旭东, 周晨. 基于试验粒子模拟的电离层人工调制激发的极低频和甚低频波对磁层高能电子的散射效应. 物理学报, doi: 10.7498/aps.63.069401
    [6] 郝书吉, 李清亮, 杨巨涛, 吴振森. 电离层调制加热产生极低频/甚低频波定向辐射的理论分析. 物理学报, doi: 10.7498/aps.62.229402
    [7] 顾旭东, 赵正予, 倪彬彬, 王 翔, 邓 峰. 地基高频加热激励ELF/VLF波对辐射带高能电子的准线性散射. 物理学报, doi: 10.7498/aps.57.6673
    [8] 倪彬彬, 赵正予, 顾旭东, 汪 枫. 场向传播的内磁层哨声波对辐射带高能电子的共振扩散. 物理学报, doi: 10.7498/aps.57.7937
    [9] 刘志明, 崔 田, 马琰铭, 刘冰冰, 邹广田. Nb2H 的电子结构和相互作用. 物理学报, doi: 10.7498/aps.56.4877
    [10] 颜利芬, 王红成, 佘卫龙. 扩散效应对光伏孤子相互作用的影响. 物理学报, doi: 10.7498/aps.55.5257
    [11] 徐妙华, 梁天骄, 张 杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子. 物理学报, doi: 10.7498/aps.55.2357
    [12] 卫青, 王奇, 施解龙, 陈园园. 孤子和辐射场的非线性相互作用. 物理学报, doi: 10.7498/aps.51.99
    [13] 张 淳, 马允胜, 孙 鑫, 叶 成. 电子相互作用和高聚物中的极化子. 物理学报, doi: 10.7498/aps.48.917
    [14] 赵东焕. 自由电子激光中电子与辐射波相互作用有效时间的分析. 物理学报, doi: 10.7498/aps.45.573
    [15] 赵东焕. 自由电子激光器中电子与波的相互作用及其增益分析. 物理学报, doi: 10.7498/aps.43.1447
    [16] 孙鑫, 陈洪奕, 吴长勤, 傅荣堂, 傅柔励. 高分子中电子相互作用矩阵元. 物理学报, doi: 10.7498/aps.40.102
    [17] 孙伯勤, 叶朝辉. 魔角旋转情形下固体的非均匀相互作用. 物理学报, doi: 10.7498/aps.35.329
    [18] 贺贤土. 等离子体中大幅波与低频振荡粒子非线性相互作用效应. 物理学报, doi: 10.7498/aps.31.1317
    [19] 于宝善, 胡代林, 苏滨丽. 分子间相互作用对联合散射谱带强度的影响. 物理学报, doi: 10.7498/aps.22.714
    [20] 孙鑫. 铁磁体中导电电子与自旋波的相互作用. 物理学报, doi: 10.7498/aps.20.193
计量
  • 文章访问数:  93
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-07

/

返回文章
返回