搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩过程中允许临时重叠对硬质颗粒体系密排密度及构型的影响

张书琛 万端端

引用本文:
Citation:

压缩过程中允许临时重叠对硬质颗粒体系密排密度及构型的影响

张书琛, 万端端

Effects of Allowing Temporary Overlaps During Compression on the Packing Density and Configuration of Hard Particle Systems

ZHANG Shuchen, WAN Duanduan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 硬质颗粒在受限空间中的致密排列具有重要的物理意义,并为许多其他物理系统提供了启发。如何实现硬质颗粒在受限空间中的高密度排列,是一个具有挑战的问题。本文运用蒙特卡洛方法,结合边界压缩机制,研究了二维圆形、正方形和长宽比为5的矩形颗粒在圆形受限空间中的致密排列。具体而言,本文探讨了在压缩过程中不允许颗粒重叠以及允许少数颗粒重叠、后移除重叠(允许临时重叠)两种方法下所能获得的最高密度。研究发现,允许临时重叠的方法能够实现更高的密排构型。进一步地,本文比较了两种压缩方式下获得的构型的径向分布函数和取向序参量,发现两者具有相似的特征,但允许临时重叠的方式在更大区域内显示出有序性。本文研究结果表明,允许颗粒临时重叠可能是提高受限空间中排列密度的有效途径。
    The dense packing of hard particles in confined spaces is of broad interest in both mathematics and statistical physics. It relates to classical packing problems under geometric constraints, plays a central role in understanding the self-assembly of microscopic particles such as colloids and nanoparticles, and inspires studies across a wide range of physical systems. However, achieving high packing densities under confinement remains challenging due to anisotropic particle shapes, the discontinuous nature of hard-core interactions, and geometric frustration. In this work, we develop a Monte Carlo scheme that combines boundary compression with controlled, temporary particle overlaps. Specifically, we allow a limited number of overlaps during the compression of a circular boundary, which are subsequently removed via standard Monte Carlo relaxation before further compression steps. We apply this strategy to three types of two-dimensional particles—disks, squares, and rectangles with an aspect ratio of 5:1—confined within a circular boundary. As a control, we also perform simulations using a conventional method that strictly prohibits overlaps throughout. The final configurations from both methods exhibit similar structural features. For hard disks, central particles form a triangular lattice, while those near the boundary become more disordered to accommodate the circular geometry. For hard squares, particles at the center organize into a square lattice, whereas those near the boundary form concentric layers. For rectangles, particles in the central region display local smectic-like alignment within clusters that are oriented nearly perpendicular to one another. Near the boundary, some particles align tangentially along the circular edge. Quantitatively, the temporary-overlap strategy consistently yields denser packings across all particle types. Analysis of 10 independent samples shows higher average and maximal packing densities compared to the conventional method. Further analysis of the radial distribution functions and orientational order parameters reveals that, although both methods produce similar structural features, the overlap-allowed method yields a larger central region exhibiting lattice-like or cluster-like ordering. Our findings suggest that allowing temporary particle overlaps is an effective strategy for generating dense configurations of hard particles under confinement. This approach may be extended to more complex systems, including three-dimensional particles or mixtures with different shapes confined within restricted geometries.
  • [1]

    Conway J H and Sloane N J A 2013 Sphere packings, lattices and groups, Vol. 290 (Springer Science & Business Media)

    [2]

    Velev O D, Lenhoff A M and Kaler E W 2000 Science 287 2240

    [3]

    De Nijs B, Dussi S, Smallenburg F, Meeldijk J D, Groenendijk D J, Filion L, Imhof A, Van Blaaderen A and Dijkstra M 2015 Nat. Mater. 14 56

    [4]

    Chen Y, Yao Z, Tang S, Tong H, Yanagishima T, Tanaka H and Tan P 2021 Nat. Phys. 17 121

    [5]

    Wang D, Dasgupta T, van der Wee E B, Zanaga D, Altantzis T, Wu Y, Coli G M, Murray C B, Bals S and Dijkstra M 2021 Nat. Phys. 17 128

    [6]

    Wang D, Hermes M, Kotni R, Wu Y, Tasios N, Liu Y, De Nijs B, Van Der Wee E B, Murray C B and Dijkstra M 2018 Nat. Commun. 9 2228

    [7]

    Wu S, Li W-B, Shi F, Jiang S-C, Lan D and Wang Y-R 2015 Acta Phys. Sin 64 096101

    [8]

    Liu X-Z and Wang H-G 2020 Acta Phys. Sin 69 238201

    [9]

    Marino E, LaCour R A and Kodger T E 2024 Crystal Growth & Design 24 6060

    [10]

    Boles M A, Engel M and Talapin D V 2016 Chem. Rev. 116 11220

    [11]

    Glotzer S C and Solomon M J 2007 Nat. Mater. 6 557

    [12]

    Marenduzzo D, Micheletti C and Orlandini E 2010 J. Phys.: Condens. Matter 22 283102

    [13]

    Ellis R J 2001 Trends Biochem. Sci 26 597

    [14]

    Cines D B, Lebedeva T, Nagaswami C, Hayes V, Massefski W, Litvinov R I, Rauova L, Lowery T J and Weisel J W 2014 Blood 123 1596

    [15]

    Hayashi T and Carthew R W 2004 Nature 431 647

    [16]

    van Roij R, Dijkstra M and Evans R 2000 Europhys. Lett. 49 350

    [17]

    de las Heras D, Velasco E and Mederos L 2005 Phys. Rev. Lett. 94 017801

    [18]

    Galanis J, Nossal R, Losert W and Harries D 2010 Phys. Rev. Lett. 105 168001

    [19]

    Chen J Z 2013 Soft Matter 9 10921

    [20]

    Burada P S, Schmid G, Reguera D, Vainstein M H, Rubi J and Hänggi P 2008 Phys. Rev. Lett. 101 130602

    [21]

    Reguera D, Luque A, Burada P S, Schmid G, Rubi J and Hänggi P 2012 Phys. Rev. Lett. 108 020604

    [22]

    Oosawa F and Asakura S 1954 J. Chem. Phys. 22 1255

    [23]

    Asakura S and Oosawa F 1958 J. Polym. Sci. 33 183

    [24]

    Crocker J C, Matteo J A, Dinsmore A D and Yodh A G 1999 Phys. Rev. Lett. 82 4352

    [25]

    Zhao K and Mason T G 2007 Phys. Rev. Lett. 99 268301

    [26]

    Zhao K and Mason T G 2008 Phys. Rev. Lett. 101 148301

    [27]

    Ma H-R 2016 Acta Phys. Sin 65 184701

    [28]

    Mughal A, Chan H, Weaire D and Hutzler S 2012 Phys. Rev. E 85 051305

    [29]

    Chen D and Torquato S 2015 Phys. Rev. E 92 062207

    [30]

    Oğuz E C, Marechal M, Ramiro-Manzano F, Rodriguez I, Messina R, Meseguer F J and Löwen H 2012 Phys. Rev. Lett. 109 218301

    [31]

    Teich E G, Van Anders G, Klotsa D, Dshemuchadse J and Glotzer S C 2016 Proc. Natl. Acad. Sci. U.S.A. 113 E669

    [32]

    Wan D and Glotzer S C 2018 Soft Matter 14 3012

    [33]

    Haji-Akbari A, Engel M, Keys A S, Zheng X, Petschek R G, Palffy-Muhoray P and Glotzer S C 2009 Nature 462 773

    [34]

    Gang O and Zhang Y 2011 ACS Nano 5 8459

    [35]

    Kraft D J, Ni R, Smallenburg F, Hermes M, Yoon K, Weitz D A, van Blaaderen A, Groenewold J, Dijkstra M and Kegel W K 2012 Proc. Natl. Acad. Sci. U.S.A. 109 10787

    [36]

    Agarwal U and Escobedo F A 2011 Nat. Mater. 10 230

    [37]

    Damasceno P F, Engel M and Glotzer S C 2012 Science 337 453

    [38]

    Ni R, Gantapara A P, De Graaf J, Van Roij R and Dijkstra M 2012 Soft Matter 8 8826

    [39]

    Marechal M, Kortschot R J, Demirors A F, Imhof A and Dijkstra M 2010 Nano Lett. 10 1907

    [40]

    Chen D, Jiao Y and Torquato S 2014 J. Phys. Chem. B 118 7981

    [41]

    Wan D, Du C X, van Anders G and Glotzer S C 2019 J. Phys. Chem. B 123 9038

    [42]

    Anderson J A, Glaser J and Glotzer S C 2020 Comput. Mater. Sci 173 109363

    [43]

    Specht E Available at http://hydra.nat.uni-magdeburg.de/packing/

    [44]

    Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784

    [45]

    Walsh L and Menon N 2016 J. Stat. Mech: Theory Exp. 2016 083302

    [46]

    Anderson J A, Antonaglia J, Millan J A, Engel M and Glotzer S C 2017 Phys. Rev. X 7 021001

  • [1] 赵永鹏, 豆艳坤, 贺新福, 杨文. Ti-V-Ta多主元合金辐照位错环形成的级联重叠模拟. 物理学报, doi: 10.7498/aps.73.20241074
    [2] 王前进, 孙鹏帅, 张志荣, 张乐文, 杨曦, 吴边, 庞涛, 夏滑, 李启勇. 混合气体测量中重叠吸收谱线交叉干扰的分离解析方法. 物理学报, doi: 10.7498/aps.70.20210286
    [3] 江鹏, 毕卫红, 齐跃峰, 付兴虎, 武洋, 田朋飞. 光子晶体光纤重叠光栅理论模型与光谱特性研究. 物理学报, doi: 10.7498/aps.65.204208
    [4] 左小伟, 安佰灵, 黄德洋, 张林, 王恩刚. 强磁场作用下Cu熔体中富Fe颗粒的迁移与排列. 物理学报, doi: 10.7498/aps.65.137401
    [5] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究. 物理学报, doi: 10.7498/aps.64.127301
    [6] 李金洋, 逯丹凤, 祁志美. 铌酸锂波导电光重叠积分因子的波长依赖特性分析. 物理学报, doi: 10.7498/aps.63.077801
    [7] 徐国亮, 张琳, 路战胜, 刘培, 刘玉芳. 特殊构型Si2N2分子团簇电致激发特性的密度泛函理论研究. 物理学报, doi: 10.7498/aps.63.103101
    [8] 狄慧鸽, 华灯鑫, 王玉峰, 闫庆. 米散射激光雷达重叠因子及全程回波信号标定技术研究. 物理学报, doi: 10.7498/aps.62.094215
    [9] 黄德财, 冯耀东, 解为梅, 陆明, 吴海平, 胡凤兰, 邓开明. 颗粒密度对旋转筒内二元颗粒体系分离的影响. 物理学报, doi: 10.7498/aps.61.124501
    [10] 侯威, 章大全, 杨萍, 杨杰. 去趋势波动分析方法中不重叠等长度子区间长度的确定. 物理学报, doi: 10.7498/aps.59.8986
    [11] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, doi: 10.7498/aps.59.7452
    [12] 徐勇, 王贤龙, 曾雉. 中性和带电小钨团簇的第一性原理研究. 物理学报, doi: 10.7498/aps.58.72
    [13] 田丽君, 刘天亮, 黄海军. 含重叠路段交通系统中信息反馈策略的比较研究. 物理学报, doi: 10.7498/aps.57.2122
    [14] 孙一翎, 潘剑侠. 多模干涉耦合器中重叠像相干相消现象分析. 物理学报, doi: 10.7498/aps.56.3300
    [15] 阎世英, 马美仲, 朱正和. B2H6分子的几何构型. 物理学报, doi: 10.7498/aps.54.3106
    [16] 马宏伟, 梁敬魁. 从x射线粉末数据获得非等效本征重叠衍射的合理衍射强度. 物理学报, doi: 10.7498/aps.53.829
    [17] 谢晓明, 蒋亦民, 王焕友, 曹晓平, 刘 佑. 颗粒堆密度变化对堆底压力分布的影响. 物理学报, doi: 10.7498/aps.52.2194
    [18] 汪蓉, 朱正和, 杨传路. C42+的几何构型和Jahn Teller效应. 物理学报, doi: 10.7498/aps.50.1675
    [19] 万 钧, 叶 令, 王 迅. Si中掺Er的原子构型与电子特性. 物理学报, doi: 10.7498/aps.47.652
    [20] 陈仁术, 西门纪业. 扇形重叠场中三级离子轨迹理论(Ⅰ)——轨迹计算和矩阵表示. 物理学报, doi: 10.7498/aps.31.722
计量
  • 文章访问数:  118
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-12

/

返回文章
返回