-
硬质颗粒在受限空间中的致密排列具有重要的物理意义,并为许多其他物理系统提供了启发。如何实现硬质颗粒在受限空间中的高密度排列,是一个具有挑战的问题。本文运用蒙特卡洛方法,结合边界压缩机制,研究了二维圆形、正方形和长宽比为5的矩形颗粒在圆形受限空间中的致密排列。具体而言,本文探讨了在压缩过程中不允许颗粒重叠以及允许少数颗粒重叠、后移除重叠(允许临时重叠)两种方法下所能获得的最高密度。研究发现,允许临时重叠的方法能够实现更高的密排构型。进一步地,本文比较了两种压缩方式下获得的构型的径向分布函数和取向序参量,发现两者具有相似的特征,但允许临时重叠的方式在更大区域内显示出有序性。本文研究结果表明,允许颗粒临时重叠可能是提高受限空间中排列密度的有效途径。The dense packing of hard particles in confined spaces is of broad interest in both mathematics and statistical physics. It relates to classical packing problems under geometric constraints, plays a central role in understanding the self-assembly of microscopic particles such as colloids and nanoparticles, and inspires studies across a wide range of physical systems. However, achieving high packing densities under confinement remains challenging due to anisotropic particle shapes, the discontinuous nature of hard-core interactions, and geometric frustration. In this work, we develop a Monte Carlo scheme that combines boundary compression with controlled, temporary particle overlaps. Specifically, we allow a limited number of overlaps during the compression of a circular boundary, which are subsequently removed via standard Monte Carlo relaxation before further compression steps. We apply this strategy to three types of two-dimensional particles—disks, squares, and rectangles with an aspect ratio of 5:1—confined within a circular boundary. As a control, we also perform simulations using a conventional method that strictly prohibits overlaps throughout. The final configurations from both methods exhibit similar structural features. For hard disks, central particles form a triangular lattice, while those near the boundary become more disordered to accommodate the circular geometry. For hard squares, particles at the center organize into a square lattice, whereas those near the boundary form concentric layers. For rectangles, particles in the central region display local smectic-like alignment within clusters that are oriented nearly perpendicular to one another. Near the boundary, some particles align tangentially along the circular edge. Quantitatively, the temporary-overlap strategy consistently yields denser packings across all particle types. Analysis of 10 independent samples shows higher average and maximal packing densities compared to the conventional method. Further analysis of the radial distribution functions and orientational order parameters reveals that, although both methods produce similar structural features, the overlap-allowed method yields a larger central region exhibiting lattice-like or cluster-like ordering. Our findings suggest that allowing temporary particle overlaps is an effective strategy for generating dense configurations of hard particles under confinement. This approach may be extended to more complex systems, including three-dimensional particles or mixtures with different shapes confined within restricted geometries.
-
Keywords:
- hard particles /
- overlap /
- packing density /
- configuration
-
[1] Conway J H and Sloane N J A 2013 Sphere packings, lattices and groups, Vol. 290 (Springer Science & Business Media)
[2] Velev O D, Lenhoff A M and Kaler E W 2000 Science 287 2240
[3] De Nijs B, Dussi S, Smallenburg F, Meeldijk J D, Groenendijk D J, Filion L, Imhof A, Van Blaaderen A and Dijkstra M 2015 Nat. Mater. 14 56
[4] Chen Y, Yao Z, Tang S, Tong H, Yanagishima T, Tanaka H and Tan P 2021 Nat. Phys. 17 121
[5] Wang D, Dasgupta T, van der Wee E B, Zanaga D, Altantzis T, Wu Y, Coli G M, Murray C B, Bals S and Dijkstra M 2021 Nat. Phys. 17 128
[6] Wang D, Hermes M, Kotni R, Wu Y, Tasios N, Liu Y, De Nijs B, Van Der Wee E B, Murray C B and Dijkstra M 2018 Nat. Commun. 9 2228
[7] Wu S, Li W-B, Shi F, Jiang S-C, Lan D and Wang Y-R 2015 Acta Phys. Sin 64 096101
[8] Liu X-Z and Wang H-G 2020 Acta Phys. Sin 69 238201
[9] Marino E, LaCour R A and Kodger T E 2024 Crystal Growth & Design 24 6060
[10] Boles M A, Engel M and Talapin D V 2016 Chem. Rev. 116 11220
[11] Glotzer S C and Solomon M J 2007 Nat. Mater. 6 557
[12] Marenduzzo D, Micheletti C and Orlandini E 2010 J. Phys.: Condens. Matter 22 283102
[13] Ellis R J 2001 Trends Biochem. Sci 26 597
[14] Cines D B, Lebedeva T, Nagaswami C, Hayes V, Massefski W, Litvinov R I, Rauova L, Lowery T J and Weisel J W 2014 Blood 123 1596
[15] Hayashi T and Carthew R W 2004 Nature 431 647
[16] van Roij R, Dijkstra M and Evans R 2000 Europhys. Lett. 49 350
[17] de las Heras D, Velasco E and Mederos L 2005 Phys. Rev. Lett. 94 017801
[18] Galanis J, Nossal R, Losert W and Harries D 2010 Phys. Rev. Lett. 105 168001
[19] Chen J Z 2013 Soft Matter 9 10921
[20] Burada P S, Schmid G, Reguera D, Vainstein M H, Rubi J and Hänggi P 2008 Phys. Rev. Lett. 101 130602
[21] Reguera D, Luque A, Burada P S, Schmid G, Rubi J and Hänggi P 2012 Phys. Rev. Lett. 108 020604
[22] Oosawa F and Asakura S 1954 J. Chem. Phys. 22 1255
[23] Asakura S and Oosawa F 1958 J. Polym. Sci. 33 183
[24] Crocker J C, Matteo J A, Dinsmore A D and Yodh A G 1999 Phys. Rev. Lett. 82 4352
[25] Zhao K and Mason T G 2007 Phys. Rev. Lett. 99 268301
[26] Zhao K and Mason T G 2008 Phys. Rev. Lett. 101 148301
[27] Ma H-R 2016 Acta Phys. Sin 65 184701
[28] Mughal A, Chan H, Weaire D and Hutzler S 2012 Phys. Rev. E 85 051305
[29] Chen D and Torquato S 2015 Phys. Rev. E 92 062207
[30] Oğuz E C, Marechal M, Ramiro-Manzano F, Rodriguez I, Messina R, Meseguer F J and Löwen H 2012 Phys. Rev. Lett. 109 218301
[31] Teich E G, Van Anders G, Klotsa D, Dshemuchadse J and Glotzer S C 2016 Proc. Natl. Acad. Sci. U.S.A. 113 E669
[32] Wan D and Glotzer S C 2018 Soft Matter 14 3012
[33] Haji-Akbari A, Engel M, Keys A S, Zheng X, Petschek R G, Palffy-Muhoray P and Glotzer S C 2009 Nature 462 773
[34] Gang O and Zhang Y 2011 ACS Nano 5 8459
[35] Kraft D J, Ni R, Smallenburg F, Hermes M, Yoon K, Weitz D A, van Blaaderen A, Groenewold J, Dijkstra M and Kegel W K 2012 Proc. Natl. Acad. Sci. U.S.A. 109 10787
[36] Agarwal U and Escobedo F A 2011 Nat. Mater. 10 230
[37] Damasceno P F, Engel M and Glotzer S C 2012 Science 337 453
[38] Ni R, Gantapara A P, De Graaf J, Van Roij R and Dijkstra M 2012 Soft Matter 8 8826
[39] Marechal M, Kortschot R J, Demirors A F, Imhof A and Dijkstra M 2010 Nano Lett. 10 1907
[40] Chen D, Jiao Y and Torquato S 2014 J. Phys. Chem. B 118 7981
[41] Wan D, Du C X, van Anders G and Glotzer S C 2019 J. Phys. Chem. B 123 9038
[42] Anderson J A, Glaser J and Glotzer S C 2020 Comput. Mater. Sci 173 109363
[43] Specht E Available at http://hydra.nat.uni-magdeburg.de/packing/
[44] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784
[45] Walsh L and Menon N 2016 J. Stat. Mech: Theory Exp. 2016 083302
[46] Anderson J A, Antonaglia J, Millan J A, Engel M and Glotzer S C 2017 Phys. Rev. X 7 021001
计量
- 文章访问数: 118
- PDF下载量: 7
- 被引次数: 0