搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分形理论结合相变动力学的冷表面结霜过程模拟

刘耀民 刘中良 黄玲艳

引用本文:
Citation:

分形理论结合相变动力学的冷表面结霜过程模拟

刘耀民, 刘中良, 黄玲艳

Simulation of frost formation process on cold plate based on fractal theory combined with phase change dynamics

Liu Yao-Min, Liu Zhong-Liang, Huang Ling-Yan
PDF
导出引用
  • 运用分形理论并结合相变动力学模拟冷表面上结霜过程.在相变动力学基础上成功模拟了结霜初始阶段水蒸气在冷表面上凝结、液滴生长及冻结过程,随后运用分形理论的有限制的扩散凝聚(diffusion limited aggregation,DLA) 模型模拟了霜晶在冻结液滴表面上的形成生长过程.模拟结果与实验结果取得良好的一致,模拟过程中凝结液滴出现及冻结的时间与实验结果几乎完全符合;液滴冻结之前其表面接触半径随时间变化的模拟结果与实验结果基本一致,同时模拟霜层厚度与实验测得霜层厚度也非常接近.研究结果对于探讨分形理
    Simulation of frost formation process on cold surface is carried out based on fractal theory combined with phase change dynamics. Before frosting, the phenomena of vapor condensation, droplet growth and frozen on cold plate are successfully simulated based on phase change dynamics and then a fractal simulation of the frost formation and growth process over the frozen droplets is carried out based on diffusion limited aggregation (DLA) model. The simulation results accord well with the experimental results. The time when the condensation droplets are present and frozen on the surface during simulation process is nearly the same as the experimental result. Before the droplets are frozen, the trend that the surface contact radius of the droplet varies with condensation time is similar to actual one. The simulation results also show that the thickness of frost layer is nearly equal to the measured value. By that means, the feasibility of this method of simulating the frost formation is verified and the new attempt made to foster the combination between fractal theory and phase change dynamics is of great significance. This study also provids a foundational theory work for a more reasonable and accurate frosting process model.
    • 基金项目: 国家自然科学基金(批准号:50376001),北京市科学技术委员会北京市科技计划(批准号:Z07020600290793)和北京工业大学第七届研究生科技基金(批准号:ykj-2009-2338)资助的课题.
    [1]

    Mandelbrot B B 1977 Fractal: Form, Chance and Dimension (New York: W. H. Freeman and Co.)

    [2]

    Barnsley M F, Demko S G 1986 Chaotic Dynamics and Fractals (New York: Academic Press)

    [3]

    Addison D S 1991 Fractals and Chaos (London: IOP Publishing Ltd) chap.3

    [4]

    Qi D L, Wang Q, and Gu H 2008 Chin. Phys. B 17 847

    [5]

    David S, Edward O 2000 Phys. D 139 1

    [6]

    Zhang J Z 1992 Acta Phys. Sin. 41 1302 (in Chinese) [张济忠 1992 物理学报 41 1302]

    [7]

    Zhang T H, Wu Y G, Sang H B, Li Y L, Zhou G 2001 Chin. Phys. 10 295

    [8]

    Su Y F, Li P X, Chen P, Xu Z F, Zhang X L 2009 Acta Phys. Sin. 58 4531 (in Chinese) [苏亚凤、李普选、陈鹏、徐忠锋、张孝林 2009 物理学报 58 4531]

    [9]

    Wu F M, Zhu Q P, Shi J Q, Wu Z Q 2000 Chin. Phys. 9 49

    [10]

    Hao Y L, Jose I, Yong X T 2005 J. Southeast Uni. 35 149

    [11]

    Hou P X, Cai L, Yu W P 2007 J. Appl. Sci. 25 193

    [12]

    Dai W T, Wu X M, Wang W C 2005 Chinese Society of Engineering Thermophysics Heat and MassTransfer conference Beijing, p1398 (in Chinese) [戴万田、吴晓敏、王维城 2005中国工程热物理学会传热传质学学术会议论文集 北京 第 1398页] 〖13] Liu Y M, Liu Z L, Huang L Y, Sun J F 2009 Sci China Ser E-Tech Sci 52 3497

    [13]

    Ismail K A R, Salinas C S 1999 Int. J. Refrigeration 22 425

    [14]

    Witten T A, Sander L M 1981 Phys. Rev. Lett. 47 1400

    [15]

    Wu F M, Zhu Q P, Shi J Q 1998 Acta Phys. Sin. 47 542 (in Chinese) [吴峰民、朱启鹏、施建青 1998 物理学报 47 542]

    [16]

    Shen W D, Jiang Z M, Tong J G 2001 Thermal Dynamics(3th edition) (Beijing: High Education Press) p343 (in Chinese) [沈维道、蒋智敏、童钧耕 2001 工程热力学(第三版)(北京:高等教育出版社)第343页]

    [17]

    Cai Y N, Wang N N 1985 Two Phase Wet Steam Flow (Xi’an: Xi’an Jiaotong University Press) p47—118 (in Chinese) [蔡颐年、王乃宁 1985 湿蒸汽两相流 (西安:西安交通大学出版社)第47—118页]

    [18]

    Liu Z L, Liu Y M, Huang L Y Software Copyright: 2009SRBJ7200

    [19]

    Wang J T 2008 Ph. D. Dissertation (Beijing: Beijing University of Technology) [王皆腾 2008 冷表面上结霜现象的理论与实验研究 博士学位论文(北京:北京工业大学)]

    [20]
  • [1]

    Mandelbrot B B 1977 Fractal: Form, Chance and Dimension (New York: W. H. Freeman and Co.)

    [2]

    Barnsley M F, Demko S G 1986 Chaotic Dynamics and Fractals (New York: Academic Press)

    [3]

    Addison D S 1991 Fractals and Chaos (London: IOP Publishing Ltd) chap.3

    [4]

    Qi D L, Wang Q, and Gu H 2008 Chin. Phys. B 17 847

    [5]

    David S, Edward O 2000 Phys. D 139 1

    [6]

    Zhang J Z 1992 Acta Phys. Sin. 41 1302 (in Chinese) [张济忠 1992 物理学报 41 1302]

    [7]

    Zhang T H, Wu Y G, Sang H B, Li Y L, Zhou G 2001 Chin. Phys. 10 295

    [8]

    Su Y F, Li P X, Chen P, Xu Z F, Zhang X L 2009 Acta Phys. Sin. 58 4531 (in Chinese) [苏亚凤、李普选、陈鹏、徐忠锋、张孝林 2009 物理学报 58 4531]

    [9]

    Wu F M, Zhu Q P, Shi J Q, Wu Z Q 2000 Chin. Phys. 9 49

    [10]

    Hao Y L, Jose I, Yong X T 2005 J. Southeast Uni. 35 149

    [11]

    Hou P X, Cai L, Yu W P 2007 J. Appl. Sci. 25 193

    [12]

    Dai W T, Wu X M, Wang W C 2005 Chinese Society of Engineering Thermophysics Heat and MassTransfer conference Beijing, p1398 (in Chinese) [戴万田、吴晓敏、王维城 2005中国工程热物理学会传热传质学学术会议论文集 北京 第 1398页] 〖13] Liu Y M, Liu Z L, Huang L Y, Sun J F 2009 Sci China Ser E-Tech Sci 52 3497

    [13]

    Ismail K A R, Salinas C S 1999 Int. J. Refrigeration 22 425

    [14]

    Witten T A, Sander L M 1981 Phys. Rev. Lett. 47 1400

    [15]

    Wu F M, Zhu Q P, Shi J Q 1998 Acta Phys. Sin. 47 542 (in Chinese) [吴峰民、朱启鹏、施建青 1998 物理学报 47 542]

    [16]

    Shen W D, Jiang Z M, Tong J G 2001 Thermal Dynamics(3th edition) (Beijing: High Education Press) p343 (in Chinese) [沈维道、蒋智敏、童钧耕 2001 工程热力学(第三版)(北京:高等教育出版社)第343页]

    [17]

    Cai Y N, Wang N N 1985 Two Phase Wet Steam Flow (Xi’an: Xi’an Jiaotong University Press) p47—118 (in Chinese) [蔡颐年、王乃宁 1985 湿蒸汽两相流 (西安:西安交通大学出版社)第47—118页]

    [18]

    Liu Z L, Liu Y M, Huang L Y Software Copyright: 2009SRBJ7200

    [19]

    Wang J T 2008 Ph. D. Dissertation (Beijing: Beijing University of Technology) [王皆腾 2008 冷表面上结霜现象的理论与实验研究 博士学位论文(北京:北京工业大学)]

    [20]
  • [1] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电. 物理学报, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [2] 宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣. Al-Ti-B细化工业纯铝凝固组织演变过程数值模拟. 物理学报, 2021, 70(8): 086402. doi: 10.7498/aps.70.20201431
    [3] 华颖鑫, 刘福生, 耿华运, 郝龙, 于继东, 谭叶, 李俊. 多次冲击加载-卸载路径下铁α-ε相变动力学特性研究. 物理学报, 2021, 70(16): 166201. doi: 10.7498/aps.70.20210089
    [4] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [5] 韩燕龙, 贾富国, 曾勇, 王爱芳. 受碾区域内颗粒轴向流动特性的离散元模拟. 物理学报, 2015, 64(23): 234502. doi: 10.7498/aps.64.234502
    [6] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [7] 行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法. 物理学报, 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [8] 杨娟, 卞保民, 彭刚, 李振华. 随机信号双参数脉冲模型的分形特征. 物理学报, 2011, 60(1): 010508. doi: 10.7498/aps.60.010508
    [9] 张世来, 刘福生, 彭小娟, 张明建, 李永宏, 马小娟, 薛学东. 纳秒尺度金属熔化相变数值模拟及实验验证. 物理学报, 2011, 60(1): 014401. doi: 10.7498/aps.60.014401
    [10] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制. 物理学报, 2010, 59(11): 7708-7712. doi: 10.7498/aps.59.7708
    [11] 姜泽辉, 赵海发, 郑瑞华. 完全非弹性蹦球倍周期运动的分形特征. 物理学报, 2009, 58(11): 7579-7583. doi: 10.7498/aps.58.7579
    [12] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [13] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究. 物理学报, 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
    [14] 封 伟, 高中扩. 有机光伏电池物理性能的模拟. 物理学报, 2008, 57(4): 2567-2573. doi: 10.7498/aps.57.2567
    [15] 李 彤, 商朋见. 多重分形在掌纹识别中的研究. 物理学报, 2007, 56(8): 4393-4400. doi: 10.7498/aps.56.4393
    [16] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究. 物理学报, 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [17] 来国军, 刘濮鲲. W波段回旋行波管放大器的模拟与设计. 物理学报, 2006, 55(1): 321-325. doi: 10.7498/aps.55.321
    [18] 路 阳, 王 帆, 朱昌盛, 王智平. 等温凝固多晶粒生长相场法模拟. 物理学报, 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [19] 王培林, 丁天骅, 蔡珣. 超薄晶体膜生长过程的计算机模拟. 物理学报, 2002, 51(9): 2109-2112. doi: 10.7498/aps.51.2109
    [20] 叶健松, 胡晓君. 超薄膜外延生长的Monte Carlo模拟. 物理学报, 2002, 51(5): 1108-1112. doi: 10.7498/aps.51.1108
计量
  • 文章访问数:  6039
  • PDF下载量:  1261
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-04
  • 修回日期:  2010-02-24
  • 刊出日期:  2010-11-15

分形理论结合相变动力学的冷表面结霜过程模拟

  • 1. 北京工业大学环境与能源工程学院,教育部传热强化与过程节能重点实验室,北京 100124
    基金项目: 国家自然科学基金(批准号:50376001),北京市科学技术委员会北京市科技计划(批准号:Z07020600290793)和北京工业大学第七届研究生科技基金(批准号:ykj-2009-2338)资助的课题.

摘要: 运用分形理论并结合相变动力学模拟冷表面上结霜过程.在相变动力学基础上成功模拟了结霜初始阶段水蒸气在冷表面上凝结、液滴生长及冻结过程,随后运用分形理论的有限制的扩散凝聚(diffusion limited aggregation,DLA) 模型模拟了霜晶在冻结液滴表面上的形成生长过程.模拟结果与实验结果取得良好的一致,模拟过程中凝结液滴出现及冻结的时间与实验结果几乎完全符合;液滴冻结之前其表面接触半径随时间变化的模拟结果与实验结果基本一致,同时模拟霜层厚度与实验测得霜层厚度也非常接近.研究结果对于探讨分形理

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回