搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变质量Chetaev型非完整系统Appell方程的Mei对称性和Mei守恒量

杨新芳 孙现亭 王肖肖 张美玲 贾利群

引用本文:
Citation:

变质量Chetaev型非完整系统Appell方程的Mei对称性和Mei守恒量

杨新芳, 孙现亭, 王肖肖, 张美玲, 贾利群

Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaevs type with variable mass

Yang Xin-Fang, Sun Xian-Ting, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun
PDF
导出引用
  • 研究变质量Chetaev型非完整系统Appell方程的Mei对称性和Mei守恒量.建立变质量Chetaev型非完整系统的Appell方程和系统的运动微分方程; 给出函数沿系统运动轨道曲线对时间t全导数的表示式,并在群的无限小变换下,给出变质量Chetaev型非完整系统Appell方程Mei对称性的定义和判据;得到用Appell函数表示的Mei对称性的结构方程和Mei守恒量的表达式,并举例说明结果的应用.
    Mei symmetry and Mei conserved quantity of Appell equation for a nonholonomic system of Chetaevs type with variable mass are studied. The Appell equation and differential equation of motion of the system are set up. The expression of the total derivative of the function along the trajectory of the system with respect to t, the definition and criterion of Mei symmetry of Appell equation for a nonholonomic system of Chetaevs type with variable mass under the infinitesimal transformation of group are given. The structural equation of Mei symmetry and the expression of Mei conserved quantity expressed by Appell equation are obtained. An example is given to illustrate the application of the results.
    • 基金项目: 中央高校基本科研业务费专项基金(批准号: JUSRP31102)和国家自然科学基金(批准号:61178032)资助的课题.
    [1]

    Appell P 1899 C. R. cad. Sc. Paris 129 317

    [2]

    Noether A E 1918 Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl, II 235

    [3]

    Vujanovi Ac' B 1986 Acta Mech. 65 63

    [4]

    Mei F X 2001 J.Beijing Institute of Tech. 21 535 (in Chinese)[梅凤翔 2001 北京理工大学学报 21 535]

    [5]

    Mei F X 2003 Acta Phys. Sin. 52 1048(in Chinese) [梅凤翔 2003 物理学报 52 1048]

    [6]

    Luo S K 2007 Acta Phys. Sin. 56 5580 (in Chinese) [罗绍凯 2007 物理学报 56 5580]

    [7]

    Luo S K,Chen X W, Guo Y X 2007 Chin. Phys. 16 3176

    [8]

    Ge W K, Mei F X 2009 Acta Phys. Sin. 58 699(in Chinese)[葛伟宽、梅凤翔 2009 物理学报 58 699]

    [9]

    Zhang Y 2008 Chin. Phys. B 17 4365

    [10]

    Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese)[罗绍凯、张永发 2008 约束系统动力学研究进展(北京:科学出版社)]

    [11]

    Cai J L 2008 Chin. Phys. Lett. 25 1523

    [12]

    Cai J L 2009 Acta Phys. Sin. 58 22(in Chinese)[蔡建乐 2009 物理学报 58 22]

    [13]

    Fang J H 2010 Chin. Phys. B 19 040301

    [14]

    Luo S K, Guo Y X 2007 Commun. Theor. Phys. 47 25

    [15]

    Jia L Q, Zhang Y Y,Yang X F,Cui J C, Xie Y L 2010 Acta Phys. Sin. 59 2939 (in Chinese)[贾利群、张耀宇、杨新芳、崔金超、解银丽 2010 物理学报 59 2939]

    [16]

    Jia L Q, Xie Y L, Zhang Y Y, Yang X F 2010 Chin. Phys. B 19 110301

    [17]

    Mei F X 1985 Foundations of mechanics of nonholonomic systems (Beijing: Beijing Institute of Technology Press) 214 (in Chinese) [梅凤翔 1985 非完整系统力学基础(北京:北京工业学院出版社)214]

    [18]

    Mei F X 2001 Chin. Phys. 10 117

    [19]

    Luo S K 2002 Acta Phys. Sin. 51 712(in Chinese) [罗绍凯 2002 物理学报 51 712]

    [20]

    Jia L Q, Zhang Y Y, Cui J C, Luo S K 2009 Commun. Theor. Phys. 52 572

    [21]

    Li Y C, Xia L L,Wang X M, Liu X W 2010 Acta Phys.Sin. 59 3639 (in Chinese)[李元成、夏丽莉、王小明、刘晓巍 2010 59 3639]

    [22]

    Jia L Q, Xie Y L, Zhang Y Y, Cui J C,Yang X F 2010 Acta Phys. Sin. 59 7552 (in Chinese)[贾利群、解银丽、张耀宇、崔金超、杨新芳 2010 物理学报 59 7552]

    [23]

    Xie Y L, Jia L Q 2010 Chin. Phys. Lett. 27 120201

    [24]

    Xie Y L, Jia L Q, Luo S K 2011 Chin. Phys. B 20 010203

    [25]

    Jia L Q, Xie Y L, Luo S K 2011 Acta Phys. Sin. 60 040201 (in Chinese)[贾利群、解银丽、罗绍凯 2011 物理学报 60 040201]

    [26]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing:Beijing Institute of Technology Press)168 (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量(北京:北京理工大学出版社)168]

    [27]

    Chen X W, Mei F X 2000 Chin. Phys. 9 721

    [28]

    Li R J, Qiao Y F, Meng J 2002 Acta Phys. Sin. 51 1(in Chinese)[李仁杰、乔永芬、孟 军 2002 物理学报 51 1]

    [29]

    Mei F X 2003 Trans. Beijing Inst. Technol. 23 1(in Chinese) [梅凤翔2003 北京理工大学学报 23 1]

    [30]

    Fang J H 2003 Commun. Theor. Phys. 40 269

  • [1]

    Appell P 1899 C. R. cad. Sc. Paris 129 317

    [2]

    Noether A E 1918 Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl, II 235

    [3]

    Vujanovi Ac' B 1986 Acta Mech. 65 63

    [4]

    Mei F X 2001 J.Beijing Institute of Tech. 21 535 (in Chinese)[梅凤翔 2001 北京理工大学学报 21 535]

    [5]

    Mei F X 2003 Acta Phys. Sin. 52 1048(in Chinese) [梅凤翔 2003 物理学报 52 1048]

    [6]

    Luo S K 2007 Acta Phys. Sin. 56 5580 (in Chinese) [罗绍凯 2007 物理学报 56 5580]

    [7]

    Luo S K,Chen X W, Guo Y X 2007 Chin. Phys. 16 3176

    [8]

    Ge W K, Mei F X 2009 Acta Phys. Sin. 58 699(in Chinese)[葛伟宽、梅凤翔 2009 物理学报 58 699]

    [9]

    Zhang Y 2008 Chin. Phys. B 17 4365

    [10]

    Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese)[罗绍凯、张永发 2008 约束系统动力学研究进展(北京:科学出版社)]

    [11]

    Cai J L 2008 Chin. Phys. Lett. 25 1523

    [12]

    Cai J L 2009 Acta Phys. Sin. 58 22(in Chinese)[蔡建乐 2009 物理学报 58 22]

    [13]

    Fang J H 2010 Chin. Phys. B 19 040301

    [14]

    Luo S K, Guo Y X 2007 Commun. Theor. Phys. 47 25

    [15]

    Jia L Q, Zhang Y Y,Yang X F,Cui J C, Xie Y L 2010 Acta Phys. Sin. 59 2939 (in Chinese)[贾利群、张耀宇、杨新芳、崔金超、解银丽 2010 物理学报 59 2939]

    [16]

    Jia L Q, Xie Y L, Zhang Y Y, Yang X F 2010 Chin. Phys. B 19 110301

    [17]

    Mei F X 1985 Foundations of mechanics of nonholonomic systems (Beijing: Beijing Institute of Technology Press) 214 (in Chinese) [梅凤翔 1985 非完整系统力学基础(北京:北京工业学院出版社)214]

    [18]

    Mei F X 2001 Chin. Phys. 10 117

    [19]

    Luo S K 2002 Acta Phys. Sin. 51 712(in Chinese) [罗绍凯 2002 物理学报 51 712]

    [20]

    Jia L Q, Zhang Y Y, Cui J C, Luo S K 2009 Commun. Theor. Phys. 52 572

    [21]

    Li Y C, Xia L L,Wang X M, Liu X W 2010 Acta Phys.Sin. 59 3639 (in Chinese)[李元成、夏丽莉、王小明、刘晓巍 2010 59 3639]

    [22]

    Jia L Q, Xie Y L, Zhang Y Y, Cui J C,Yang X F 2010 Acta Phys. Sin. 59 7552 (in Chinese)[贾利群、解银丽、张耀宇、崔金超、杨新芳 2010 物理学报 59 7552]

    [23]

    Xie Y L, Jia L Q 2010 Chin. Phys. Lett. 27 120201

    [24]

    Xie Y L, Jia L Q, Luo S K 2011 Chin. Phys. B 20 010203

    [25]

    Jia L Q, Xie Y L, Luo S K 2011 Acta Phys. Sin. 60 040201 (in Chinese)[贾利群、解银丽、罗绍凯 2011 物理学报 60 040201]

    [26]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing:Beijing Institute of Technology Press)168 (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量(北京:北京理工大学出版社)168]

    [27]

    Chen X W, Mei F X 2000 Chin. Phys. 9 721

    [28]

    Li R J, Qiao Y F, Meng J 2002 Acta Phys. Sin. 51 1(in Chinese)[李仁杰、乔永芬、孟 军 2002 物理学报 51 1]

    [29]

    Mei F X 2003 Trans. Beijing Inst. Technol. 23 1(in Chinese) [梅凤翔2003 北京理工大学学报 23 1]

    [30]

    Fang J H 2003 Commun. Theor. Phys. 40 269

  • [1] 张芳, 张耀宇, 薛喜昌, 贾利群. 相对运动完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2015, 64(13): 134501. doi: 10.7498/aps.64.134501
    [2] 王菲菲, 方建会, 王英丽, 徐瑞莉. 离散变质量完整系统的Noether对称性与Mei对称性. 物理学报, 2014, 63(17): 170202. doi: 10.7498/aps.63.170202
    [3] 孙现亭, 张耀宇, 张芳, 贾利群. 完整系统Appell方程Lie对称性的共形不变性与Hojman守恒量. 物理学报, 2014, 63(14): 140201. doi: 10.7498/aps.63.140201
    [4] 贾利群, 孙现亭, 张美玲, 张耀宇, 韩月林. 相对运动变质量力学系统Appell方程的广义Lie对称性导致的广义Hojman守恒量. 物理学报, 2014, 63(1): 010201. doi: 10.7498/aps.63.010201
    [5] 张芳, 李伟, 张耀宇, 薛喜昌, 贾利群. 变质量Chetaev型非完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2014, 63(16): 164501. doi: 10.7498/aps.63.164501
    [6] 韩月林, 孙现亭, 张耀宇, 贾利群. 完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2013, 62(16): 160201. doi: 10.7498/aps.62.160201
    [7] 王肖肖, 张美玲, 韩月林, 贾利群. Chetaev型非完整约束相对运动动力学系统Nielsen方程的Mei对称性和Mei守恒量. 物理学报, 2012, 61(20): 200203. doi: 10.7498/aps.61.200203
    [8] 孙现亭, 韩月林, 王肖肖, 张美玲, 贾利群. 完整系统Appell方程Mei对称性的一种新的守恒量. 物理学报, 2012, 61(20): 200204. doi: 10.7498/aps.61.200204
    [9] 张斌, 方建会, 张克军. 变质量非完整系统的Lagrange对称性与守恒量. 物理学报, 2012, 61(2): 021101. doi: 10.7498/aps.61.021101
    [10] 贾利群, 解银丽, 罗绍凯. 相对运动动力学系统Appell方程Mei对称性导致的Mei守恒量. 物理学报, 2011, 60(4): 040201. doi: 10.7498/aps.60.040201
    [11] 李元成, 夏丽莉, 王小明, 刘晓巍. 完整系统Appell方程的Lie-Mei对称性与守恒量. 物理学报, 2010, 59(6): 3639-3642. doi: 10.7498/aps.59.3639
    [12] 贾利群, 崔金超, 罗绍凯, 张耀宇. 事件空间中单面非Chetaev型非完整系统Nielsen方程的Mei对称性与Mei守恒量. 物理学报, 2009, 58(4): 2141-2146. doi: 10.7498/aps.58.2141
    [13] 贾利群, 罗绍凯, 张耀宇. 非完整系统Nielsen方程的Mei对称性与Mei守恒量. 物理学报, 2008, 57(4): 2006-2010. doi: 10.7498/aps.57.2006
    [14] 胡楚勒. 一类非完整系统运动微分方程的Lie对称性与Hojman型守恒量. 物理学报, 2007, 56(7): 3675-3677. doi: 10.7498/aps.56.3675
    [15] 郑世旺, 贾利群. 非完整系统Tzénoff方程的Mei对称性和守恒量. 物理学报, 2007, 56(2): 661-665. doi: 10.7498/aps.56.661
    [16] 贾利群, 罗绍凯, 张耀宇. 事件空间中单面非Chetaev型非完整约束系统的Mei守恒量. 物理学报, 2007, 56(11): 6188-6193. doi: 10.7498/aps.56.6188
    [17] 贾利群, 郑世旺, 张耀宇. 事件空间中非Chetaev型非完整系统的Mei对称性与Mei守恒量. 物理学报, 2007, 56(10): 5575-5579. doi: 10.7498/aps.56.5575
    [18] 张 毅. 单面非Chetaev型非完整约束系统的非Noether守恒量. 物理学报, 2006, 55(2): 504-510. doi: 10.7498/aps.55.504
    [19] 李 红, 方建会. 变质量单面完整约束系统的Mei对称性. 物理学报, 2004, 53(9): 2807-2810. doi: 10.7498/aps.53.2807
    [20] 乔永芬, 赵淑红. Poincar-Chetaev变量下变质量非完整动力学系统的运动方程. 物理学报, 2001, 50(5): 805-810. doi: 10.7498/aps.50.805
计量
  • 文章访问数:  6190
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-06
  • 修回日期:  2011-01-17
  • 刊出日期:  2011-11-15

变质量Chetaev型非完整系统Appell方程的Mei对称性和Mei守恒量

  • 1. 江南大学理学院,无锡 214122;
  • 2. 平顶山学院电气信息工程学院,平顶山 467002
    基金项目: 中央高校基本科研业务费专项基金(批准号: JUSRP31102)和国家自然科学基金(批准号:61178032)资助的课题.

摘要: 研究变质量Chetaev型非完整系统Appell方程的Mei对称性和Mei守恒量.建立变质量Chetaev型非完整系统的Appell方程和系统的运动微分方程; 给出函数沿系统运动轨道曲线对时间t全导数的表示式,并在群的无限小变换下,给出变质量Chetaev型非完整系统Appell方程Mei对称性的定义和判据;得到用Appell函数表示的Mei对称性的结构方程和Mei守恒量的表达式,并举例说明结果的应用.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回