[1] |
陈锋, 任刚. 基于纠缠态表象的双模耦合谐振子量子特性分析. 物理学报,
2024, 73(23): 230302.
doi: 10.7498/aps.73.20241303
|
[2] |
田艳, 何桂添, 罗懋康. 具有非线性阻尼涨落的线性谐振子的随机共振. 物理学报,
2016, 65(6): 060501.
doi: 10.7498/aps.65.060501
|
[3] |
钟苏川, 蔚涛, 张路, 马洪. 具有质量及频率涨落的欠阻尼线性谐振子的随机共振. 物理学报,
2015, 64(2): 020202.
doi: 10.7498/aps.64.020202
|
[4] |
张良英, 曹力, 吴大进. 周期外力对频率涨落的过阻尼谐振子所作的功和能量随机共振. 物理学报,
2013, 62(19): 190502.
doi: 10.7498/aps.62.190502
|
[5] |
王建辉, 熊双泉, 何济洲, 刘江涛. 以一维谐振子势阱中的单粒子为工质的量子热机性能分析. 物理学报,
2012, 61(8): 080509.
doi: 10.7498/aps.61.080509
|
[6] |
夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性. 物理学报,
2012, 61(1): 014208.
doi: 10.7498/aps.61.014208
|
[7] |
陆志新, 曹力. 输入方波信号的过阻尼谐振子的随机共振. 物理学报,
2011, 60(11): 110501.
doi: 10.7498/aps.60.110501
|
[8] |
张莉, 刘立, 曹力. 过阻尼谐振子的随机共振. 物理学报,
2010, 59(3): 1494-1498.
doi: 10.7498/aps.59.1494
|
[9] |
王晓芹, 周立友, 逯怀新. 含时谐振子的动力学演化. 物理学报,
2008, 57(11): 6736-6740.
doi: 10.7498/aps.57.6736
|
[10] |
王智勇, 熊彩东. 量子力学中的时间. 物理学报,
2007, 56(6): 3070-3075.
doi: 10.7498/aps.56.3070
|
[11] |
徐秀玮, 任廷琦, 刘姝延, 董永绵, 赵继德. 多维耦合受迫量子谐振子的普遍解. 物理学报,
2006, 55(2): 535-538.
doi: 10.7498/aps.55.535
|
[12] |
李伯臧, 李玲. 量子动边界广义含时谐振子之精确的指数-正弦型演化态. 物理学报,
2001, 50(9): 1654-1660.
doi: 10.7498/aps.50.1654
|
[13] |
何明, 段宜武, 朱熙文, 施磊. Paul阱中共面构型三费米子的量子力学运动. 物理学报,
2001, 50(2): 198-203.
doi: 10.7498/aps.50.198
|
[14] |
凌瑞良. 含时阻尼谐振子的传播子与严格波函数. 物理学报,
2001, 50(8): 1421-1424.
doi: 10.7498/aps.50.1421
|
[15] |
凌瑞良. R(t)LC介观电路的量子力学处理. 物理学报,
1999, 48(12): 2343-2348.
doi: 10.7498/aps.48.2343
|
[16] |
凌瑞良, 冯金福. 阻尼谐振子的严格波函数. 物理学报,
1998, 47(12): 1952-1956.
doi: 10.7498/aps.47.1952
|
[17] |
李锦茴, 曾高坚. 带量子位相的谐振子及其表示. 物理学报,
1995, 44(3): 337-344.
doi: 10.7498/aps.44.337
|
[18] |
R. D. KHAN, 章介伦, 丁胜, 沈文达. 依赖于速度的量子受迫非简谐振子的演化. 物理学报,
1993, 42(5): 699-704.
doi: 10.7498/aps.42.699
|
[19] |
陈卫, 常哲, 郭汉英. 经典q变形谐振子及其?量子化. 物理学报,
1991, 40(3): 337-344.
doi: 10.7498/aps.40.337
|
[20] |
朱如曾. 关于阻尼振子的量子化处理问题. 物理学报,
1981, 30(10): 1410-1414.
doi: 10.7498/aps.30.1410
|