搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子点调制的一维量子波导中声学声子输运和热导

彭小芳 王新军 龚志强 陈丽群

引用本文:
Citation:

量子点调制的一维量子波导中声学声子输运和热导

彭小芳, 王新军, 龚志强, 陈丽群

Acoustic phonon transport and thermal conductance in one-dimensional quantum waveguide modulated with quantum dots

Peng Xiao-Fang, Wang Xin-Jun, Gong Zhi-Qiang, Chen Li-Qun
PDF
导出引用
  • 利用散射矩阵方法,比较了被一维凸形量子点、凹形量子点调制的量子线中膨胀模的声子输运和热导性质. 研究结果表明: 声子的输运概率与热导受制于量子点几何结构,具有凸形量子点结构的量子线中声子输运概率与热导KCV大于具有凹形量子点结构的量子线中声子输运概率与热导KCC. 两者热导之比KCV/KCC依赖于一维量子点的具体结构,且随着温度及主量子线与量子点横截面的边长差SL的增加而增加. 两种具有不同散射结构的一维量子线中热输运性质的区别在于凸形量子点结构中膨胀模数量总是大于凹形量子点结构中膨胀模数量的缘故.
    By using scattering matrix method, we compare the propertics of acoustic phonon transport and thermal conductance in one-dimensional quantum waveguide modulated with both convex-shape and concave-shape quantum structures. The results show that the transmission spectra and thermal conductances are sensitive to the geometric structures of quantum dots, and the transmission rate and thermal conductance KCV in the convex-shape quantum structure are bigger than the transmission rate and thermal conductance KCC in the concave-shape quantum structure. The thermal conductance ratio KCV/KCC is dependent on the geometric detail of quantum dot, and the ratio increases with the increase of difference in side-length of the cross section between the quantum dot and the main quantum waveguide. The difference in thermal transport between the convex-shape and the concave-shape quantum structures originates from more excited dilatational acoustic modes in the convex-shape quantum structure than in the concave-shape quantum structure.
    • 基金项目: 中南林业科技大学人才引进计划(批准号: 104-0160)资助的课题.
    [1]

    Blencowe M P 2004 Phys. Rep. 395 159

    [2]

    Tighe T S, Worlock J M, Roukes M L 1997 Appl. Phys. Lett. 70 2687

    [3]
    [4]

    Wees B J, Houten H, Beenakker C W J, Williamson J G, Kouwenhoven L P, Marel D, Foxon C T 1988 Phys. Rev. Lett. 60 848

    [5]
    [6]

    Muller J E 1992 Phys. Rev. Lett. 68 385

    [7]
    [8]

    Duan W H, Zhu J L, Gu B L 1994 Phys. Rev. B 49 14403

    [9]
    [10]
    [11]

    Chklovsii D B 1995 Phys. Rev. B 51 9895

    [12]

    Li J, Zhang Z Q, Liu Y 1997 Phys. Rev. B 55 5337

    [13]
    [14]

    Gu B Y, Sheng W D, Wang X H, Wang J 1997 Phys. Rev. B 56 13434

    [15]
    [16]
    [17]

    Sim H S, Ahn K H, Chang K J, Ihm G, Kim N, Lee S J 1998 Phys. Rev. Lett. 80 1501

    [18]

    Wang X H, Gu B Y, Yang G Z 1998 Phys. Rev. B 58 4629

    [19]
    [20]
    [21]

    Chen K Q, Gu B Y, Chuu D S 1999 Int. J. Mod. Phys. B 13 903

    [22]
    [23]

    Chen K Q, Wang X H, Gu B Y 2000 Phys. Rev. B 61 12075

    [24]

    Xu H Q 2002 Phys. Rev. B 66 165305

    [25]
    [26]

    Wu H B, Chang K, Xia J B 2002 Phys. Rev. B 65 195204

    [27]
    [28]

    Zhu J L, Dai Z S, Hu X 2003 Phys. Rev. B 68 45324

    [29]
    [30]
    [31]

    Xia J B, Li S S 2003 Phys. Rev. B 68 75310

    [32]
    [33]

    Huang W Q, Chen K Q, Shuai Z G, Wang L L, Hu W Y 2004 Acta Phys. Sin. 53 2330 (in Chinese) [黄维清、陈克求、帅志刚、王玲玲、胡望宇 2004 物理学报 53 2330 ]

    [34]
    [35]

    Wang X J, Wang L L, Huang W Q, Tang L M, Chen K Q 2006 Acta Phys. Sin. 55 3649 (in Chinese) [王新军、王玲玲、黄维清、唐黎明、陈克求 2006 物理学报 55 3649 ]

    [36]
    [37]

    Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232

    [38]

    Schwab K, Henriksen E A, Norlock J M, Roukes M L 2000 Nature 404 974

    [39]
    [40]

    Meschke M, Guichard W, Pekola J 2006 Nature 444 187

    [41]
    [42]
    [43]

    Ojanen T, Heikkila T T 2007 Phys. Rev. B 76 073414

    [44]

    Chiatti O, Nicholls J T, Proskuryakov Y, Lumpkin Y N, Farrer I, Ritchie D A 2006 Phys. Rev. Lett. 97 056601

    [45]
    [46]
    [47]

    Cross M C, Lifshitz R 2001 Phys. Rev. B 64 85324

    [48]
    [49]

    Chang C M, Geller M R 2005 Phys. Rev. B 71 125304

    [50]
    [51]

    Tang L M, Wang L L, Chen K Q, Huang W Q, Zou B S 2006 Appl. Phys. Lett. 88 163505

    [52]
    [53]

    Peng X F, He M D, Wang X J, Chen L C, Pan C L, Luo Y F 2011 Physica E 43 1065

    [54]

    Nie L Y, Wang L L, Chen K Q, Zou B S, Zhao L H 2007 Physica E 39 185

    [55]
    [56]
    [57]

    Xie F, Chen K Q, Wang Y G, Zhang Y 2008 J. Appl. Phys. 103 084501

    [58]

    Li K M, Wang L L, Huang W Q, Zou B S, Wan Q 2009 J. Appl. Phys. 105 104515

    [59]
    [60]
    [61]

    Santamore D H, Cross M C 2001 Phys. Rev. Lett. 87 115502

    [62]

    Santamore D H, Cross M C 2001 Phys. Rev. B 63 184306

    [63]
    [64]

    Chen K Q, Li W X, Duan W H, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [65]
    [66]
    [67]

    Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2004 J. Phys.: Condens. Matter 16 5049

    [68]
    [69]

    Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y, Zou B S 2005 J. Appl. Phys. 98 093524

    [70]
    [71]

    Yang P, Sun Q F, Guo H, Hu B B 2007 Phys. Rev. B 75 235319

    [72]
    [73]

    Li K M, Wang L L, Huang W Q, Zou B S, Wan Q 2008 Phys. Lett. A 372 5816

    [74]

    Volz S G, Chen G 1999 Appl. Phys. Lett. 75 2056

    [75]
    [76]

    Li B W, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [77]
    [78]
    [79]

    Hu B B, Yang L, Zhang Y 2006 Phys. Rev. Lett. 97 124302

    [80]
    [81]

    Eckmann J P, Carlos M M 2006 Phys. Rev. Lett. 97 094301

    [82]

    Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2004 Appl. Phys. Lett. 85 822

    [83]
    [84]
    [85]

    Ming Y, Wang Z X, Li Q, Ding Z Z 2007 Appl. Phys. Lett. 91 143508

    [86]

    Peng X F, Chen K Q 2010 Physica E 42 1968

    [87]
    [88]

    Peng X F, Chen K Q, Zou B S, Zhang Y 2007 Appl. Phys. Lett. 90 193502

    [89]
    [90]

    Tanaka Y, Yoshida F, Tamura S 2005 Phys. Rev. B 71 205308

    [91]
    [92]

    Peng X F, Chen K Q, Wang Q, Zhou B S 2010 Phys. Rev. B 81 195317

    [93]
  • [1]

    Blencowe M P 2004 Phys. Rep. 395 159

    [2]

    Tighe T S, Worlock J M, Roukes M L 1997 Appl. Phys. Lett. 70 2687

    [3]
    [4]

    Wees B J, Houten H, Beenakker C W J, Williamson J G, Kouwenhoven L P, Marel D, Foxon C T 1988 Phys. Rev. Lett. 60 848

    [5]
    [6]

    Muller J E 1992 Phys. Rev. Lett. 68 385

    [7]
    [8]

    Duan W H, Zhu J L, Gu B L 1994 Phys. Rev. B 49 14403

    [9]
    [10]
    [11]

    Chklovsii D B 1995 Phys. Rev. B 51 9895

    [12]

    Li J, Zhang Z Q, Liu Y 1997 Phys. Rev. B 55 5337

    [13]
    [14]

    Gu B Y, Sheng W D, Wang X H, Wang J 1997 Phys. Rev. B 56 13434

    [15]
    [16]
    [17]

    Sim H S, Ahn K H, Chang K J, Ihm G, Kim N, Lee S J 1998 Phys. Rev. Lett. 80 1501

    [18]

    Wang X H, Gu B Y, Yang G Z 1998 Phys. Rev. B 58 4629

    [19]
    [20]
    [21]

    Chen K Q, Gu B Y, Chuu D S 1999 Int. J. Mod. Phys. B 13 903

    [22]
    [23]

    Chen K Q, Wang X H, Gu B Y 2000 Phys. Rev. B 61 12075

    [24]

    Xu H Q 2002 Phys. Rev. B 66 165305

    [25]
    [26]

    Wu H B, Chang K, Xia J B 2002 Phys. Rev. B 65 195204

    [27]
    [28]

    Zhu J L, Dai Z S, Hu X 2003 Phys. Rev. B 68 45324

    [29]
    [30]
    [31]

    Xia J B, Li S S 2003 Phys. Rev. B 68 75310

    [32]
    [33]

    Huang W Q, Chen K Q, Shuai Z G, Wang L L, Hu W Y 2004 Acta Phys. Sin. 53 2330 (in Chinese) [黄维清、陈克求、帅志刚、王玲玲、胡望宇 2004 物理学报 53 2330 ]

    [34]
    [35]

    Wang X J, Wang L L, Huang W Q, Tang L M, Chen K Q 2006 Acta Phys. Sin. 55 3649 (in Chinese) [王新军、王玲玲、黄维清、唐黎明、陈克求 2006 物理学报 55 3649 ]

    [36]
    [37]

    Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232

    [38]

    Schwab K, Henriksen E A, Norlock J M, Roukes M L 2000 Nature 404 974

    [39]
    [40]

    Meschke M, Guichard W, Pekola J 2006 Nature 444 187

    [41]
    [42]
    [43]

    Ojanen T, Heikkila T T 2007 Phys. Rev. B 76 073414

    [44]

    Chiatti O, Nicholls J T, Proskuryakov Y, Lumpkin Y N, Farrer I, Ritchie D A 2006 Phys. Rev. Lett. 97 056601

    [45]
    [46]
    [47]

    Cross M C, Lifshitz R 2001 Phys. Rev. B 64 85324

    [48]
    [49]

    Chang C M, Geller M R 2005 Phys. Rev. B 71 125304

    [50]
    [51]

    Tang L M, Wang L L, Chen K Q, Huang W Q, Zou B S 2006 Appl. Phys. Lett. 88 163505

    [52]
    [53]

    Peng X F, He M D, Wang X J, Chen L C, Pan C L, Luo Y F 2011 Physica E 43 1065

    [54]

    Nie L Y, Wang L L, Chen K Q, Zou B S, Zhao L H 2007 Physica E 39 185

    [55]
    [56]
    [57]

    Xie F, Chen K Q, Wang Y G, Zhang Y 2008 J. Appl. Phys. 103 084501

    [58]

    Li K M, Wang L L, Huang W Q, Zou B S, Wan Q 2009 J. Appl. Phys. 105 104515

    [59]
    [60]
    [61]

    Santamore D H, Cross M C 2001 Phys. Rev. Lett. 87 115502

    [62]

    Santamore D H, Cross M C 2001 Phys. Rev. B 63 184306

    [63]
    [64]

    Chen K Q, Li W X, Duan W H, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [65]
    [66]
    [67]

    Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2004 J. Phys.: Condens. Matter 16 5049

    [68]
    [69]

    Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y, Zou B S 2005 J. Appl. Phys. 98 093524

    [70]
    [71]

    Yang P, Sun Q F, Guo H, Hu B B 2007 Phys. Rev. B 75 235319

    [72]
    [73]

    Li K M, Wang L L, Huang W Q, Zou B S, Wan Q 2008 Phys. Lett. A 372 5816

    [74]

    Volz S G, Chen G 1999 Appl. Phys. Lett. 75 2056

    [75]
    [76]

    Li B W, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [77]
    [78]
    [79]

    Hu B B, Yang L, Zhang Y 2006 Phys. Rev. Lett. 97 124302

    [80]
    [81]

    Eckmann J P, Carlos M M 2006 Phys. Rev. Lett. 97 094301

    [82]

    Li W X, Chen K Q, Duan W H, Wu J, Gu B L 2004 Appl. Phys. Lett. 85 822

    [83]
    [84]
    [85]

    Ming Y, Wang Z X, Li Q, Ding Z Z 2007 Appl. Phys. Lett. 91 143508

    [86]

    Peng X F, Chen K Q 2010 Physica E 42 1968

    [87]
    [88]

    Peng X F, Chen K Q, Zou B S, Zhang Y 2007 Appl. Phys. Lett. 90 193502

    [89]
    [90]

    Tanaka Y, Yoshida F, Tamura S 2005 Phys. Rev. B 71 205308

    [91]
    [92]

    Peng X F, Chen K Q, Wang Q, Zhou B S 2010 Phys. Rev. B 81 195317

    [93]
  • [1] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究. 物理学报, 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [2] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211477
    [3] 李宇昂, 吴迪, 王栋立, 胡昊, 潘毅. 基于原子操纵技术的人工量子结构研究. 物理学报, 2021, 70(2): 020701. doi: 10.7498/aps.70.20201501
    [4] 周欣, 高仁斌, 谭仕华, 彭小芳, 蒋湘涛, 包本刚. 多空穴错位分布对石墨纳米带中热输运的影响. 物理学报, 2017, 66(12): 126302. doi: 10.7498/aps.66.126302
    [5] 舒安庆, 吴锋. 量子热声微循环的优化性能. 物理学报, 2016, 65(16): 164303. doi: 10.7498/aps.65.164303
    [6] 卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳. 多通道石墨纳米带中弹性声学声子输运和热导特性. 物理学报, 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [7] 姚海峰, 谢月娥, 欧阳滔, 陈元平. 嵌入线型缺陷的石墨纳米带的热输运性质. 物理学报, 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [8] 彭小芳, 陈丽群, 罗勇锋, 刘凌虹, 王凯军. 含双T形量子结构的量子波导中声学声子输运和热导. 物理学报, 2013, 62(5): 056805. doi: 10.7498/aps.62.056805
    [9] 鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新. L型石墨纳米结的热输运. 物理学报, 2011, 60(2): 028103. doi: 10.7498/aps.60.028103
    [10] 聂六英, 李春先, 周晓萍, 程芳, 王成志. 结构缺陷对量子波导腔中热导的调控. 物理学报, 2011, 60(11): 116301. doi: 10.7498/aps.60.116301
    [11] 叶伏秋, 李科敏, 彭小芳. 低温下多通道量子结构中的弹性声子输运和热导. 物理学报, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [12] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响. 物理学报, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [13] 姚凌江, 王玲玲. 含半圆弧形腔的量子波导中声学声子输运和热导特性. 物理学报, 2008, 57(5): 3100-3106. doi: 10.7498/aps.57.3100
    [14] 唐黎明, 王 艳, 王 丹, 王玲玲. 边界条件对介电量子波导中声子输运性质的影响. 物理学报, 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [15] 贺梦冬, 龚志强. 多层异质结构中的声学声子输运. 物理学报, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [16] 熊志铭, 张青川, 陈大鹏, 伍小平, 郭哲颖, 董凤良, 缪正宇, 李超波. 光学读出微梁阵列红外成像及性能分析. 物理学报, 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [17] 赵 俊, 申彩霞, 周 放, 熊季午. 磁场对La2-xSrxCuO4单晶热导的影响研究. 物理学报, 2005, 54(8): 3845-3850. doi: 10.7498/aps.54.3845
    [18] 蔡炜颖, 李志锋, 陆 卫, 李守荣, 梁平治. Si微电阻桥温度分布与热传导特性的显微Raman光谱研究. 物理学报, 2003, 52(11): 2923-2928. doi: 10.7498/aps.52.2923
    [19] 李玉璋, 徐仲英, 葛惟锟, 许继宗, 郑宝贞, 庄蔚华. 多量子阱结构中热载流子弛豫过程中的非平衡声子效应. 物理学报, 1989, 38(9): 1540-1544. doi: 10.7498/aps.38.1540
    [20] 雷啸霖, 丁秦生. 非线性电子输运中声学和光学声子的联合散射效应. 物理学报, 1985, 34(8): 983-991. doi: 10.7498/aps.34.983
计量
  • 文章访问数:  3719
  • PDF下载量:  615
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-24
  • 修回日期:  2011-06-27
  • 刊出日期:  2011-06-05

量子点调制的一维量子波导中声学声子输运和热导

  • 1. 中南林业科技大学理学院,长沙 410004
    基金项目: 中南林业科技大学人才引进计划(批准号: 104-0160)资助的课题.

摘要: 利用散射矩阵方法,比较了被一维凸形量子点、凹形量子点调制的量子线中膨胀模的声子输运和热导性质. 研究结果表明: 声子的输运概率与热导受制于量子点几何结构,具有凸形量子点结构的量子线中声子输运概率与热导KCV大于具有凹形量子点结构的量子线中声子输运概率与热导KCC. 两者热导之比KCV/KCC依赖于一维量子点的具体结构,且随着温度及主量子线与量子点横截面的边长差SL的增加而增加. 两种具有不同散射结构的一维量子线中热输运性质的区别在于凸形量子点结构中膨胀模数量总是大于凹形量子点结构中膨胀模数量的缘故.

English Abstract

参考文献 (93)

目录

    /

    返回文章
    返回