搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒光诱导铽镓石榴石晶体中的磁化响应研究

金钻明 郭飞云 马红 王立华 马国宏 陈建中

引用本文:
Citation:

飞秒光诱导铽镓石榴石晶体中的磁化响应研究

金钻明, 郭飞云, 马红, 王立华, 马国宏, 陈建中

Femtosecond photoinduced magnetization of terbium gallium garnet crystal

Jin Zuan-Ming, Guo Fei-Yun, Ma Hong, Wang Li-Hua, Ma Guo-Hong, Chen Jian-Zhong
PDF
导出引用
  • 运用时间分辨抽运-探测光谱技术,研究了磁光晶体铽镓石榴石(TGG)在不同椭圆偏振态的飞秒激光脉冲诱导下的极化和磁化响应.研究表明,当仅存在逆法拉第效应时,探测光旋转角信号和椭圆率信号的变化方向与圆偏振抽运光的旋向相关.这是由于圆偏振光在TGG晶体中产生的瞬态有效磁场的方向依赖于圆偏振光的旋向所致.光诱导磁化过程与材料的性质有关,TGG晶体的顺磁特性决定了其自旋弛豫时间为几十飞秒.由于探测光旋转角信号和椭圆率信号的半高全宽均为500 fs左右,加之信号强度随着抽运光脉冲能量密度的增加呈线性增长,表明TGG晶
    The photoinduced magnetization in magneto-optical crystal terbium gallium garnet (TGG) is investigated by time-resolved pump-probe spectroscopy. When the pump pulse is elliptically polarized, the rotation signal and the ellipticity signal of the probe pulse are observed at zero time delay, resulting from the optical Kerr effect and the inverse Faraday effect. The direction of the effective magnetic field is dominated by the helicity of the pump pulse, so the rotation signal and the ellipticity signal of the probe pulse can be triggered selectively by modifying the helicity of the pump pulse. The full widths at half maximum of the rotation signal and the ellipticity signal both can be as fast as about 500 fs, which indicates that TGG crystal is expected to be a candidate material of ultrafast all-optical magnetic switching.
    • 基金项目: 国家自然科学基金(批准号:10774099,50772023)、上海市科学技术委员会应用基础研究计划(批准号:09530501100)、上海市高等学校特聘教授 (东方学者) 岗位计划、上海市重点学科建设基金(批准号:S30105)、国家光电子晶体材料工程技术研究中心基金(批准号:2005DC105003)和上海大学研究生创新基金(批准号:SHUCX102006)资助的课题.
    [1]

    Van der Ziel J P, Pershan P S, Malmstrom L D 1965 Phys. Rev. Lett. 15 190

    [2]

    Pershan P S, Van der Ziel J P, Malmstrom L D 1966 Phys. Rev. 143 574

    [3]
    [4]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250

    [5]
    [6]

    Koopmans B, van Kampen M, Kohlhepp J T, de Jonge W J M 2000 Phys. Rev. Lett. 85 844

    [7]
    [8]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601

    [9]
    [10]

    Gao R X, Xu Z, Chen D X, Xu C D, Chen Z F, Liu X D, Zhou S M, Lai T S 2009 Acta Phys. Sin. 58 580 (in Chinese) [高瑞鑫、徐 振、陈达鑫、徐初东、陈志峰、刘晓东、周仕明、赖天树 2009 物理学报 58 580]

    [11]
    [12]
    [13]

    Xu C D, Chen Z F, Chen D X, Zhou S M, Lai T S 2010 Appl. Phys. Lett. 96 092514

    [14]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655

    [15]
    [16]

    Vahaplar K, Kalashnikova A M, Kimel A V, Hinzke D, Nowak U, Chantrell R, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T 2009 Phys. Rev. Lett. 103 117201

    [17]
    [18]

    Reid A H M, Kimel A V, Kirilyuk A, Gregg J F, Rasing T 2010 Phys. Rev. B 81 104404

    [19]
    [20]

    Satoh T, Cho S, Shimura T, Kuroda K, Ueda H, Ueda Y, Fiebig M 2010 J. Opt. Soc. Am. B 27 1421

    [21]
    [22]

    Satoh T, Cho S, Iida R, Shimura T, Kuroda K, Ueda H, Ueda Y, Ivanov B A, Nori F, Fiebig M 2010 Phys. Rev. Lett. 105 077402

    [23]
    [24]
    [25]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515

    [26]

    Zhang G P, Hbner W, Lefkidis G, Bai Y, George T F 2009 Nat. Phys. 5 499

    [27]
    [28]

    Jin Z M, Ma H, Wang L H, Ma G H, Guo F Y, Chen J Z 2010 Appl. Phys. Lett. 96 201108

    [29]
    [30]
    [31]

    Ma G, He J, Tang S 2003 Phys. Lett. A 306 348

    [32]

    Chen D X, Chen Z F, Xu C D, Lai T S 2010 Acta Phys. Sin. 59 7362 (in Chinese) [陈达鑫、陈志峰、徐初东、赖天树 2010 物理学报 59 7362]

    [33]
    [34]

    Jin Z M, Ma H, Li D, Ma G H 2009 Acta Opt. Sin. 29 2343 (in Chinese) [金钻明、马 红、李 栋、马国宏 2009 光学学报 29 2343]

    [35]
    [36]
    [37]

    Ma H, Ma G H, Wang W J, Gao X X, Ma H L 2008 Chin. Phys. B 17 1280

    [38]

    Muneaki H, Kunie I, Jure D, Kiminori U, Masahiro K 2005 Phys. Rev. B 71 184301

    [39]
    [40]

    Svirko Y P, Zheludev N I 1994 J. Opt. Soc. Am. B 11 1388

    [41]
    [42]

    Wilks R, Hicken R J, Ali M, Hickey B J, Buchanan J D R, Pym A T G, Tanner B K 2004 J. Appl. Phys. 95 7441

    [43]
    [44]

    Kruglyak V V, Hicken R J, Ali M, Hickey B J, Pym A T G, Tanner B K 2005 Phys. Rev. B 71 233104

    [45]
    [46]
    [47]

    Zheludev N I, Bennett P J, Loh H, Popov S V, Shatwell I R, Svirko Y P, Gusev V E, Kamalov V F, Slobodchikov E V 1995 Opt. Lett. 20 1368

    [48]
    [49]

    Pavlov V V, Pisarev R V, Gridnev V N, Zhukov E A, Yakovlev D R, Bayer M 2007 Phys. Rev. Lett. 98 047403

    [50]

    Bennett P J, Albanis V, Svirko Y P, Zheludev N I 1999 Opt. Lett. 24 1373

    [51]
  • [1]

    Van der Ziel J P, Pershan P S, Malmstrom L D 1965 Phys. Rev. Lett. 15 190

    [2]

    Pershan P S, Van der Ziel J P, Malmstrom L D 1966 Phys. Rev. 143 574

    [3]
    [4]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250

    [5]
    [6]

    Koopmans B, van Kampen M, Kohlhepp J T, de Jonge W J M 2000 Phys. Rev. Lett. 85 844

    [7]
    [8]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601

    [9]
    [10]

    Gao R X, Xu Z, Chen D X, Xu C D, Chen Z F, Liu X D, Zhou S M, Lai T S 2009 Acta Phys. Sin. 58 580 (in Chinese) [高瑞鑫、徐 振、陈达鑫、徐初东、陈志峰、刘晓东、周仕明、赖天树 2009 物理学报 58 580]

    [11]
    [12]
    [13]

    Xu C D, Chen Z F, Chen D X, Zhou S M, Lai T S 2010 Appl. Phys. Lett. 96 092514

    [14]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655

    [15]
    [16]

    Vahaplar K, Kalashnikova A M, Kimel A V, Hinzke D, Nowak U, Chantrell R, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T 2009 Phys. Rev. Lett. 103 117201

    [17]
    [18]

    Reid A H M, Kimel A V, Kirilyuk A, Gregg J F, Rasing T 2010 Phys. Rev. B 81 104404

    [19]
    [20]

    Satoh T, Cho S, Shimura T, Kuroda K, Ueda H, Ueda Y, Fiebig M 2010 J. Opt. Soc. Am. B 27 1421

    [21]
    [22]

    Satoh T, Cho S, Iida R, Shimura T, Kuroda K, Ueda H, Ueda Y, Ivanov B A, Nori F, Fiebig M 2010 Phys. Rev. Lett. 105 077402

    [23]
    [24]
    [25]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515

    [26]

    Zhang G P, Hbner W, Lefkidis G, Bai Y, George T F 2009 Nat. Phys. 5 499

    [27]
    [28]

    Jin Z M, Ma H, Wang L H, Ma G H, Guo F Y, Chen J Z 2010 Appl. Phys. Lett. 96 201108

    [29]
    [30]
    [31]

    Ma G, He J, Tang S 2003 Phys. Lett. A 306 348

    [32]

    Chen D X, Chen Z F, Xu C D, Lai T S 2010 Acta Phys. Sin. 59 7362 (in Chinese) [陈达鑫、陈志峰、徐初东、赖天树 2010 物理学报 59 7362]

    [33]
    [34]

    Jin Z M, Ma H, Li D, Ma G H 2009 Acta Opt. Sin. 29 2343 (in Chinese) [金钻明、马 红、李 栋、马国宏 2009 光学学报 29 2343]

    [35]
    [36]
    [37]

    Ma H, Ma G H, Wang W J, Gao X X, Ma H L 2008 Chin. Phys. B 17 1280

    [38]

    Muneaki H, Kunie I, Jure D, Kiminori U, Masahiro K 2005 Phys. Rev. B 71 184301

    [39]
    [40]

    Svirko Y P, Zheludev N I 1994 J. Opt. Soc. Am. B 11 1388

    [41]
    [42]

    Wilks R, Hicken R J, Ali M, Hickey B J, Buchanan J D R, Pym A T G, Tanner B K 2004 J. Appl. Phys. 95 7441

    [43]
    [44]

    Kruglyak V V, Hicken R J, Ali M, Hickey B J, Pym A T G, Tanner B K 2005 Phys. Rev. B 71 233104

    [45]
    [46]
    [47]

    Zheludev N I, Bennett P J, Loh H, Popov S V, Shatwell I R, Svirko Y P, Gusev V E, Kamalov V F, Slobodchikov E V 1995 Opt. Lett. 20 1368

    [48]
    [49]

    Pavlov V V, Pisarev R V, Gridnev V N, Zhukov E A, Yakovlev D R, Bayer M 2007 Phys. Rev. Lett. 98 047403

    [50]

    Bennett P J, Albanis V, Svirko Y P, Zheludev N I 1999 Opt. Lett. 24 1373

    [51]
  • [1] 许琳茜, 朱榕琪, 朱竹青, 贡丽萍, 顾兵. 单轴晶体中产生的高纯度纵向针形磁化场. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220316
    [2] 董大兴, 刘友文, 伏洋洋, 费越. 金属光栅异常透射增强黑磷烯法拉第旋转的理论研究. 物理学报, 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [3] 曹重阳, 陆健能, 张恒闻, 朱竹青, 王晓雷, 顾兵. 紧聚焦角向偏振分数阶涡旋光诱导磁化场特性. 物理学报, 2020, 69(16): 167802. doi: 10.7498/aps.69.20200269
    [4] 蔡伟, 许友安, 杨志勇. 三价镨离子掺杂对铽镓石榴石晶体磁光性能影响的量子计算. 物理学报, 2019, 68(13): 137801. doi: 10.7498/aps.68.20190576
    [5] 樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏. 低温生长砷化镓的超快光抽运-太赫兹探测光谱. 物理学报, 2017, 66(8): 087801. doi: 10.7498/aps.66.087801
    [6] 颜森林. 半导体激光器混沌法拉第效应控制方法. 物理学报, 2015, 64(24): 240505. doi: 10.7498/aps.64.240505
    [7] 王建飞, 王潇, 罗洪, 孟洲. 基于法拉第旋镜的干涉型光纤传感系统偏振相位噪声特性研究. 物理学报, 2012, 61(15): 150701. doi: 10.7498/aps.61.150701
    [8] 董丽娟, 杜桂强, 杨成全, 石云龙. 厚金属Ag膜的磁光法拉第旋转效应的增强. 物理学报, 2012, 61(16): 164210. doi: 10.7498/aps.61.164210
    [9] 严卫, 陆文, 施健康, 任建奇, 王蕊. 法拉第旋转对空间被动微波遥感的影响及消除. 物理学报, 2011, 60(9): 099401. doi: 10.7498/aps.60.099401
    [10] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转. 物理学报, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [11] 汤奇, 孟繁义, 张狂, 吴群, 李乐伟. 法拉第手征介质反射电磁波的极化特性研究. 物理学报, 2011, 60(1): 014206. doi: 10.7498/aps.60.014206
    [12] 滕利华, 王霞. 载流子复合对时间分辨法拉第旋转光谱的影响. 物理学报, 2011, 60(5): 057202. doi: 10.7498/aps.60.057202
    [13] 刘公强, 朱莲根, 卫邦达, 张宁杲. 动态法拉第效应及其损耗机制. 物理学报, 1997, 46(3): 604-611. doi: 10.7498/aps.46.604
    [14] 毕耜云. 石榴石薄膜中的条畴铁磁共振. 物理学报, 1990, 39(1): 149-153. doi: 10.7498/aps.39.149
    [15] 刘行仁, 王宗凯, 王晓君. 钇镓石榴石中Tb3+到Ce3+的无辐射能量传递特征. 物理学报, 1989, 38(3): 430-438. doi: 10.7498/aps.38.430
    [16] 刘公强, 黄燕萍. 顺磁性物质中法拉第磁光效应及其温度特性的量子理论. 物理学报, 1988, 37(10): 1626-1632. doi: 10.7498/aps.37.1626
    [17] 刘玉龙, 张鹏翔, 莫育俊, 屠安. 磁性石榴石单晶Bi-YIG的布里渊散射. 物理学报, 1987, 36(5): 651-654. doi: 10.7498/aps.36.651
    [18] 王焕元, 贾惟义, 沈建祥. Bi4Ge3O12晶体的磁光法拉第旋转. 物理学报, 1985, 34(1): 126-128. doi: 10.7498/aps.34.126
    [19] 张鹏翔, 刘玉龙, 莫育俊. 钆镓石榴石单晶的喇曼光谱. 物理学报, 1983, 32(9): 1200-1203. doi: 10.7498/aps.32.1200
    [20] 李国栋, 徐英庭. 铋钙钒石榴石型铁氧体穆斯堡尔效应的研究. 物理学报, 1976, 25(5): 444-449. doi: 10.7498/aps.25.444
计量
  • 文章访问数:  4164
  • PDF下载量:  1057
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-28
  • 修回日期:  2011-01-29
  • 刊出日期:  2011-04-05

飞秒光诱导铽镓石榴石晶体中的磁化响应研究

  • 1. 上海大学物理系,上海 200444;
  • 2. 福州大学化学化工学院,福建 350002
    基金项目: 国家自然科学基金(批准号:10774099,50772023)、上海市科学技术委员会应用基础研究计划(批准号:09530501100)、上海市高等学校特聘教授 (东方学者) 岗位计划、上海市重点学科建设基金(批准号:S30105)、国家光电子晶体材料工程技术研究中心基金(批准号:2005DC105003)和上海大学研究生创新基金(批准号:SHUCX102006)资助的课题.

摘要: 运用时间分辨抽运-探测光谱技术,研究了磁光晶体铽镓石榴石(TGG)在不同椭圆偏振态的飞秒激光脉冲诱导下的极化和磁化响应.研究表明,当仅存在逆法拉第效应时,探测光旋转角信号和椭圆率信号的变化方向与圆偏振抽运光的旋向相关.这是由于圆偏振光在TGG晶体中产生的瞬态有效磁场的方向依赖于圆偏振光的旋向所致.光诱导磁化过程与材料的性质有关,TGG晶体的顺磁特性决定了其自旋弛豫时间为几十飞秒.由于探测光旋转角信号和椭圆率信号的半高全宽均为500 fs左右,加之信号强度随着抽运光脉冲能量密度的增加呈线性增长,表明TGG晶

English Abstract

参考文献 (51)

目录

    /

    返回文章
    返回