搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合交叉进化算法的混沌系统参数估计

龙文 焦建军

引用本文:
Citation:

基于混合交叉进化算法的混沌系统参数估计

龙文, 焦建军

Parameter estimation for chaotic system based on evolution algorithm with hybrid crossover

Long Wen, Jiao Jian-Jun
PDF
导出引用
  • 提出一种混合交叉进化算法 来估计混沌系统的未知参数. 首先通过构造一个适当的适应度函数, 将混沌系统的参数估计问题转化为一个多维的优化问题. 在混合交叉进化算法中, 利用佳点集方法初始化种群, 增加了算法的稳定性和全局搜索能力. 在进化过程中, 混合交叉操作既能指导种群个体向最优解子空间靠近, 又能提高算法跳出局部最优的能力, 从而协调了算法的勘探和开采能力. 以几个标准测试函数和典型的Lorenz混沌系统为例进行仿真实验, 结果表明了该方法的有效性.
    A hybrid-crossover-based evolution algorithm is proposed to estimate the parameters of chaotic system. Through establishing an appropriate fitness function, the parameter estimation problem is coverted into a multi-dimensional functional optimization problem. In this approach, the individual generation based on good-point-set method is introduced into the evolutionary algorithm initial step, which reinforces the stability and global exploration ability of the evolutionary algorithm. In the evolution process, it not only can be explored to induce the new individuals generated by stochastic hybrid crossover operation to fly into the better subspace, but also can avoid the premature convergence and speed up the convergence. It coordinates the exploitation ability and the exploration ability of algorithm. Numerical simulations on the benchmark function and the Lorenz system are conducted. The results demonstrate the effectiveness of the proposed algorithm, which is shown to be an effective method of parameter estimation for chaotic systems.
    • 基金项目: 国家自然科学基金(批准号: 61074069, 10961008)、 贵州省教育厅自然科学研究培养项目(批准号: 2010027) 和贵州财经学院引进人才科研启动基金 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61074069, 10961008), the Natural Science Foundation of Education Bureau of Guizhou Province, China (Grant No. 2010027), and the Scientific Research Foundation for the Introduced Talents of Guizhou College of Finance and Economics, China.
    [1]

    Park J H 2005 Chaos Soliton. Fract. 23 503

    [2]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196

    [3]

    Duchateau A, Bradshawn P, Beraini H 1999 Int. J. Control 72 727

    [4]

    Maybhate A, Amritkar R E 1999 Phys. Rev. E 59 284

    [5]

    Parlitz U 1996 Phys. Rev. Lett. 76 1232

    [6]

    Cao X Q, Song J Q, Zhang W M, Zhao J, Zhang L L 2011 Acta Phys.Sin. 60 070511 (in Chinese) [曹小群, 宋君强, 张卫民, 赵军, 张理论 2011 物理学报 60 070511]

    [7]

    Wang S M, Yue C Y, Luo H G 2007 J. Huazhong Univ. Sci. Technol. 35 121 (in Chinese) [王绍明, 岳超源, 罗海庚 2007 华中科技大学学报 35 121]

    [8]

    Dai D, Ma X K, Li F C, You Y 2002 Acta Phys. Sin. 51 2459 (in Chinese) [戴栋, 马西奎, 李富才, 尤勇 2002 物理学报 51 2459]

    [9]

    Gao F, Tong H Q 2006 Acta Phys. Sin. 55 577 (in Chinese) [高飞, 童恒庆 2006 物理学报 55 577]

    [10]

    Li L X, Peng H P, Yang Y X, Wang X D 2007 Acta Phys. Sin. 56 51 (in Chinese) [李丽香, 彭海朋, 杨义先, 王向东 2007 物理学报 56 51]

    [11]

    Wang J Y, Huang D X 2008 Acta Phys. Sin. 57 2755 (in Chinese) [王钧炎, 黄德先 2008 物理学报 57 2755]

    [12]

    Ren Z W, Xiong R 2010 Control Theory Appl. 27 1448 (in Chinese) [任子武, 熊蓉 2010 控制理论与应用 27 1448]

    [13]

    Leung Y W, Wang Y P 2000 IEEE Trans. Evolu. Comp. 4 41

    [14]

    Zhang L, Zhang B 2001 Chin. J. Comput. 24 917 (in Chinese) [张铃, 张钹 2001 计算机学报 24 917]

    [15]

    Gen M, Cheng R W 1997 Genetic Algorithm+Data Structure = Evolutionary Programs (New York: John Wiley and Sons Press) p29

    [16]

    Kusum D, Manoj T 2007 Appl. Math. Comput. 188 895

    [17]

    Liang X M, Xiao W, Long W, Qin H Y 2010 J. Comput. Appl. 30 2582 (in Chinese) [梁昔明, 肖伟, 龙文, 秦浩宇 2010 计算机应用 30 2582]

  • [1]

    Park J H 2005 Chaos Soliton. Fract. 23 503

    [2]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196

    [3]

    Duchateau A, Bradshawn P, Beraini H 1999 Int. J. Control 72 727

    [4]

    Maybhate A, Amritkar R E 1999 Phys. Rev. E 59 284

    [5]

    Parlitz U 1996 Phys. Rev. Lett. 76 1232

    [6]

    Cao X Q, Song J Q, Zhang W M, Zhao J, Zhang L L 2011 Acta Phys.Sin. 60 070511 (in Chinese) [曹小群, 宋君强, 张卫民, 赵军, 张理论 2011 物理学报 60 070511]

    [7]

    Wang S M, Yue C Y, Luo H G 2007 J. Huazhong Univ. Sci. Technol. 35 121 (in Chinese) [王绍明, 岳超源, 罗海庚 2007 华中科技大学学报 35 121]

    [8]

    Dai D, Ma X K, Li F C, You Y 2002 Acta Phys. Sin. 51 2459 (in Chinese) [戴栋, 马西奎, 李富才, 尤勇 2002 物理学报 51 2459]

    [9]

    Gao F, Tong H Q 2006 Acta Phys. Sin. 55 577 (in Chinese) [高飞, 童恒庆 2006 物理学报 55 577]

    [10]

    Li L X, Peng H P, Yang Y X, Wang X D 2007 Acta Phys. Sin. 56 51 (in Chinese) [李丽香, 彭海朋, 杨义先, 王向东 2007 物理学报 56 51]

    [11]

    Wang J Y, Huang D X 2008 Acta Phys. Sin. 57 2755 (in Chinese) [王钧炎, 黄德先 2008 物理学报 57 2755]

    [12]

    Ren Z W, Xiong R 2010 Control Theory Appl. 27 1448 (in Chinese) [任子武, 熊蓉 2010 控制理论与应用 27 1448]

    [13]

    Leung Y W, Wang Y P 2000 IEEE Trans. Evolu. Comp. 4 41

    [14]

    Zhang L, Zhang B 2001 Chin. J. Comput. 24 917 (in Chinese) [张铃, 张钹 2001 计算机学报 24 917]

    [15]

    Gen M, Cheng R W 1997 Genetic Algorithm+Data Structure = Evolutionary Programs (New York: John Wiley and Sons Press) p29

    [16]

    Kusum D, Manoj T 2007 Appl. Math. Comput. 188 895

    [17]

    Liang X M, Xiao W, Long W, Qin H Y 2010 J. Comput. Appl. 30 2582 (in Chinese) [梁昔明, 肖伟, 龙文, 秦浩宇 2010 计算机应用 30 2582]

  • [1] 黄宇, 刘玉峰, 彭志敏, 丁艳军. 基于量子并行粒子群优化算法的分数阶混沌系统参数估计. 物理学报, 2015, 64(3): 030505. doi: 10.7498/aps.64.030505
    [2] 谢宇, 赵春霞, 张浩峰, 颜雪军, 陈得宝. 基于混合交叉差分进化的相机空间操控系统参数优化. 物理学报, 2015, 64(2): 020701. doi: 10.7498/aps.64.020701
    [3] 丁红兵, 王超, 赵雅坤. 临界流喷嘴喉部氢气等熵指数解析计算与进化回归方法. 物理学报, 2014, 63(16): 164701. doi: 10.7498/aps.63.164701
    [4] 张淑宁, 赵惠昌, 熊刚, 郭长勇. 基于粒子滤波的单通道正弦调频混合信号分离与参数估计. 物理学报, 2014, 63(15): 158401. doi: 10.7498/aps.63.158401
    [5] 王柳, 何文平, 万仕全, 廖乐健, 何涛. 混沌系统中参数估计的演化建模方法. 物理学报, 2014, 63(1): 019203. doi: 10.7498/aps.63.019203
    [6] 林剑, 许力. 基于混合生物地理优化的混沌系统参数估计. 物理学报, 2013, 62(3): 030505. doi: 10.7498/aps.62.030505
    [7] 陈帝伊, 柳烨, 马孝义. 基于径向基函数神经网络的混沌时间序列相空间重构双参数联合估计. 物理学报, 2012, 61(10): 100501. doi: 10.7498/aps.61.100501
    [8] 王世元, 冯久超. 一种新的参数估计方法及其在混沌信号盲分离中的应用. 物理学报, 2012, 61(17): 170508. doi: 10.7498/aps.61.170508
    [9] 王开, 裴文江, 张毅峰, 周思源, 邵硕. 基于符号向量动力学的耦合映像格子参数估计. 物理学报, 2011, 60(7): 070502. doi: 10.7498/aps.60.070502
    [10] 赵建利, 王京, 魏伟. Lorenz混沌系统的近似有限时间稳定控制. 物理学报, 2011, 60(10): 100203. doi: 10.7498/aps.60.100203
    [11] 曹小群, 宋君强, 张卫民, 赵军, 张理论. 基于变分方法的混沌系统参数估计. 物理学报, 2011, 60(7): 070511. doi: 10.7498/aps.60.070511
    [12] 曹小群, 张卫民, 宋君强, 朱小谦, 王舒畅. 海-气振子系统中未知参数的MCMC方法识别. 物理学报, 2009, 58(9): 6050-6057. doi: 10.7498/aps.58.6050
    [13] 陈 争, 曾以成, 付志坚. 混沌背景中信号参数估计的新方法. 物理学报, 2008, 57(1): 46-50. doi: 10.7498/aps.57.46
    [14] 王钧炎, 黄德先. 基于混合差分进化算法的混沌系统参数估计. 物理学报, 2008, 57(5): 2755-2760. doi: 10.7498/aps.57.2755
    [15] 张 荣, 胡爱花, 徐振源. 单向耦合网络连接的Lorenz系统的追踪控制. 物理学报, 2007, 56(12): 6851-6856. doi: 10.7498/aps.56.6851
    [16] 贾飞蕾, 徐 伟, 都 林. 参数未知的不同阶数混沌系统广义同步及参数估计. 物理学报, 2007, 56(10): 5640-5647. doi: 10.7498/aps.56.5640
    [17] 李丽香, 彭海朋, 杨义先, 王向东. 基于混沌蚂蚁群算法的Lorenz混沌系统的参数估计. 物理学报, 2007, 56(1): 51-55. doi: 10.7498/aps.56.51
    [18] 高 飞, 童恒庆. 基于改进粒子群优化算法的混沌系统参数估计方法. 物理学报, 2006, 55(2): 577-582. doi: 10.7498/aps.55.577
    [19] 戴栋, 马西奎, 李富才, 尤勇. 一种基于遗传算法的混沌系统参数估计方法. 物理学报, 2002, 51(11): 2459-2462. doi: 10.7498/aps.51.2459
    [20] 关新平, 彭海朋, 李丽香, 王益群. Lorenz混沌系统的参数辨识与控制. 物理学报, 2001, 50(1): 26-29. doi: 10.7498/aps.50.26
计量
  • 文章访问数:  4474
  • PDF下载量:  680
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-24
  • 修回日期:  2012-06-05
  • 刊出日期:  2012-06-05

基于混合交叉进化算法的混沌系统参数估计

  • 1. 贵州财经学院, 贵州省经济系统仿真重点实验室, 贵阳 550004;
  • 2. 贵州财经学院数学与统计学院, 贵阳 550004
    基金项目: 国家自然科学基金(批准号: 61074069, 10961008)、 贵州省教育厅自然科学研究培养项目(批准号: 2010027) 和贵州财经学院引进人才科研启动基金 资助的课题.

摘要: 提出一种混合交叉进化算法 来估计混沌系统的未知参数. 首先通过构造一个适当的适应度函数, 将混沌系统的参数估计问题转化为一个多维的优化问题. 在混合交叉进化算法中, 利用佳点集方法初始化种群, 增加了算法的稳定性和全局搜索能力. 在进化过程中, 混合交叉操作既能指导种群个体向最优解子空间靠近, 又能提高算法跳出局部最优的能力, 从而协调了算法的勘探和开采能力. 以几个标准测试函数和典型的Lorenz混沌系统为例进行仿真实验, 结果表明了该方法的有效性.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回