搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构造非线性发展方程无穷序列类孤子精确解的一种方法

套格图桑 白玉梅

引用本文:
Citation:

构造非线性发展方程无穷序列类孤子精确解的一种方法

套格图桑, 白玉梅

A method of constructing infinite sequence soliton-like solutions of nonlinear evolution equations

Taogetusang, Bai Yu-Mei
PDF
导出引用
  • 辅助方程法已构造了非线性发展方程的有限多个新精确解. 本文为了构造非线性发展方程的无穷序列类孤子精确解, 分析总结了辅助方程法的构造性和机械化性特点. 在此基础上,给出了一种辅助方程的新解与Riccati方程之间的拟Bcklund变换. 选择了非线性发展方程的两种形式解,借助符号计算系统 Mathematica,用改进的(2+1) 维色散水波系统为应用实例,构造了该方程的无穷序列类孤子新精确解. 这些解包括无穷序列光滑类孤子解, 紧孤立子解和尖峰类孤立子解.
    The auxiliary equation method is used to construct the finite new exact solutions of nonlinear evolution equations. To search for infinite sequence soliton-like exact solutions of nonlinear evolution equations, characteristics of constructivity and mechanization of auxiliary equation method are analyzed and summarized. Therefore, the quasi-Bcklund transformation between new solutions of a kind of auxiliary equation with Riccati equation is presented, then (2+1)-dimensional modified dispersive water-wave system is taken as an applicable example to find infinite sequence soliton-like new exact solutions by choosing two kinds of formal solutions of nonlinear evolution equations with the help of symbolic computation system Mathematica, where included are the infinite sequence smooth soliton-like solutions, compact soliton solutions and peak soliton-like solutions.
    • 基金项目: 国家自然科学基金资助项目(批准号: 10862003)、内蒙古自治区高等学校科学研究基金(批准号: NJZY12031)和 内蒙古自治区自然科学基金(批准号: 2010MS0111)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 10862003), the Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region, China(Grant No. NJZY12031) and the Natural Science Foundation of Inner Mongolia Autonomous Region, China(Grant No. 2010MS0111).
    [1]

    Fan E G 2000 Phys. Lett. A 277 212

    [2]
    [3]

    Chen Y, Li B, Zhang H Q 2003 Chin. Phys. 12 940

    [4]
    [5]

    Chen Y, Yan Z Y, Li B, Zhang H Q 2003 Chin. Phys. 12 1

    [6]

    Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 137

    [7]
    [8]
    [9]

    Li D S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 143

    [10]
    [11]

    Li D S, Zhang H Q 2004 Chin. Phys. 13 1377

    [12]
    [13]

    Chen H T, Zhang H Q 2004 Commun. Theor. Phys. (Beijing) 42 497

    [14]

    Xie F D, Chen J, L Z S 2005 Commun. Theor. Phys. (Beijing) 43 585

    [15]
    [16]

    Xie F D,Yuan Z T 2005 Commun. Theor. Phys. (Beijing) 43 39

    [17]
    [18]

    Zhen X D, Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 647

    [19]
    [20]
    [21]

    LU Z S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 405

    [22]

    Xie F D, Gao X S 2004 Commun. Theor. Phys.(Beijing) 41 353

    [23]
    [24]
    [25]

    Chen Y, Li B 2004 Commun. Theor. Phys. (Beijing) 41 1

    [26]

    Ma S H, Fang J P, Zhu H P 2007 Acta Phys. Sin. 56 4319 (in Chinese) [马松华, 方建平, 朱海平 2007 物理学报 56 4319]

    [27]
    [28]

    Ma S H, Wu X H, Fang J P, Zheng C L 2008 Acta Phys. Sin. 57 11 (in Chinese) [马松华, 吴小红, 方建平, 郑春龙 2008 物理学报 57 11]

    [29]
    [30]
    [31]

    Li D S, Zhang H Q 2003 Acta Phys. Sin. 52 1569(in Chinese)[李德生, 张鸿庆 2003 物理学报 52 1569]

    [32]

    Li D S, Zhang H Q 2004 Chin. Phys. 13 984

    [33]
    [34]

    Wang Z,Li D S, Lu H F, Zhang H Q 2005 Chin. Phys. 14 2158

    [35]
    [36]

    Wang Z, Zhang H Q 2006 Chin. Phys. 15 2210

    [37]
    [38]
    [39]

    Li D S, Zhang H Q 2006 Acta Phys. Sin. 55 1565(in Chinese) [李德生, 张鸿庆 2006 物理学报 55 1565]

    [40]
    [41]

    Li D S, Zhang H Q 2004 Chin. Phys. 13 1377

    [42]

    Lu D C, Hong B J, Tian L X 2006 Acta Phys. Sin. 55 5617(in Chinese)[卢殿臣, 洪宝剑, 田立新 2006 物理学报 55 5617]

    [43]
    [44]

    Boiti M 1987 Inverse Problems 3 37

    [45]
    [46]

    Durovsky V G, Konopelchenko E G 1994 Phys. A 27 4619

    [47]
    [48]

    Radha R, Lakshmanan M 1997 Math. Phys. 38 292

    [49]
    [50]

    Radha R, Lakshmanan M 1999 Chaos, Solitons Fractals 10 1821

    [51]
  • [1]

    Fan E G 2000 Phys. Lett. A 277 212

    [2]
    [3]

    Chen Y, Li B, Zhang H Q 2003 Chin. Phys. 12 940

    [4]
    [5]

    Chen Y, Yan Z Y, Li B, Zhang H Q 2003 Chin. Phys. 12 1

    [6]

    Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 137

    [7]
    [8]
    [9]

    Li D S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 143

    [10]
    [11]

    Li D S, Zhang H Q 2004 Chin. Phys. 13 1377

    [12]
    [13]

    Chen H T, Zhang H Q 2004 Commun. Theor. Phys. (Beijing) 42 497

    [14]

    Xie F D, Chen J, L Z S 2005 Commun. Theor. Phys. (Beijing) 43 585

    [15]
    [16]

    Xie F D,Yuan Z T 2005 Commun. Theor. Phys. (Beijing) 43 39

    [17]
    [18]

    Zhen X D, Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 647

    [19]
    [20]
    [21]

    LU Z S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 405

    [22]

    Xie F D, Gao X S 2004 Commun. Theor. Phys.(Beijing) 41 353

    [23]
    [24]
    [25]

    Chen Y, Li B 2004 Commun. Theor. Phys. (Beijing) 41 1

    [26]

    Ma S H, Fang J P, Zhu H P 2007 Acta Phys. Sin. 56 4319 (in Chinese) [马松华, 方建平, 朱海平 2007 物理学报 56 4319]

    [27]
    [28]

    Ma S H, Wu X H, Fang J P, Zheng C L 2008 Acta Phys. Sin. 57 11 (in Chinese) [马松华, 吴小红, 方建平, 郑春龙 2008 物理学报 57 11]

    [29]
    [30]
    [31]

    Li D S, Zhang H Q 2003 Acta Phys. Sin. 52 1569(in Chinese)[李德生, 张鸿庆 2003 物理学报 52 1569]

    [32]

    Li D S, Zhang H Q 2004 Chin. Phys. 13 984

    [33]
    [34]

    Wang Z,Li D S, Lu H F, Zhang H Q 2005 Chin. Phys. 14 2158

    [35]
    [36]

    Wang Z, Zhang H Q 2006 Chin. Phys. 15 2210

    [37]
    [38]
    [39]

    Li D S, Zhang H Q 2006 Acta Phys. Sin. 55 1565(in Chinese) [李德生, 张鸿庆 2006 物理学报 55 1565]

    [40]
    [41]

    Li D S, Zhang H Q 2004 Chin. Phys. 13 1377

    [42]

    Lu D C, Hong B J, Tian L X 2006 Acta Phys. Sin. 55 5617(in Chinese)[卢殿臣, 洪宝剑, 田立新 2006 物理学报 55 5617]

    [43]
    [44]

    Boiti M 1987 Inverse Problems 3 37

    [45]
    [46]

    Durovsky V G, Konopelchenko E G 1994 Phys. A 27 4619

    [47]
    [48]

    Radha R, Lakshmanan M 1997 Math. Phys. 38 292

    [49]
    [50]

    Radha R, Lakshmanan M 1999 Chaos, Solitons Fractals 10 1821

    [51]
  • [1] 套格图桑, 伊丽娜. 一类非线性发展方程的复合型双孤子新解. 物理学报, 2015, 64(2): 020201. doi: 10.7498/aps.64.020201
    [2] 套格图桑, 白玉梅. 非线性发展方程的Riemann theta 函数等几种新解. 物理学报, 2013, 62(10): 100201. doi: 10.7498/aps.62.100201
    [3] 套格图桑. 构造非线性发展方程的无穷序列复合型类孤子新解. 物理学报, 2013, 62(7): 070202. doi: 10.7498/aps.62.070202
    [4] 成建军, 张鸿庆. 非线性发展方程的Wronskian解及Young图证明. 物理学报, 2013, 62(20): 200504. doi: 10.7498/aps.62.200504
    [5] 套格图桑. sine-Gordon型方程的无穷序列新精确解. 物理学报, 2011, 60(7): 070203. doi: 10.7498/aps.60.070203
    [6] 套格图桑. 构造非线性发展方程无穷序列复合型精确解的一种方法. 物理学报, 2011, 60(1): 010202. doi: 10.7498/aps.60.010202
    [7] 套格图桑. 几种辅助方程与非线性发展方程的无穷序列精确解. 物理学报, 2011, 60(5): 050201. doi: 10.7498/aps.60.050201
    [8] 套格图桑, 斯仁道尔吉. Volterra差分微分方程和KdV差分微分方程新的精确解. 物理学报, 2009, 58(9): 5887-5893. doi: 10.7498/aps.58.5887
    [9] 套格图桑, 斯仁道尔吉. 构造变系数非线性发展方程精确解的一种方法. 物理学报, 2009, 58(4): 2121-2126. doi: 10.7498/aps.58.2121
    [10] 套格图桑, 斯仁道尔吉. 辅助方程构造带强迫项变系数组合KdV方程的精确解. 物理学报, 2008, 57(3): 1295-1300. doi: 10.7498/aps.57.1295
    [11] 吴国将, 张 苗, 史良马, 张文亮, 韩家骅. 扩展的Jacobi椭圆函数展开法和Zakharov方程组的新的精确周期解. 物理学报, 2007, 56(9): 5054-5059. doi: 10.7498/aps.56.5054
    [12] 套格图桑, 斯仁道尔吉. 辅助方程构造(2+1)维Hybrid-Lattice系统和离散的mKdV方程的精确解. 物理学报, 2007, 56(2): 627-636. doi: 10.7498/aps.56.627
    [13] 吴国将, 韩家骅, 史良马, 张 苗. 一般变换下双Jacobi椭圆函数展开法及应用. 物理学报, 2006, 55(8): 3858-3863. doi: 10.7498/aps.55.3858
    [14] 套格图桑, 斯仁道尔吉. 构造非线性发展方程精确解的一种方法. 物理学报, 2006, 55(12): 6214-6221. doi: 10.7498/aps.55.6214
    [15] 刘成仕. 试探方程法及其在非线性发展方程中的应用. 物理学报, 2005, 54(6): 2505-2509. doi: 10.7498/aps.54.2505
    [16] 韩兆秀. 非线性Klein-Gordon方程新的精确解. 物理学报, 2005, 54(4): 1481-1484. doi: 10.7498/aps.54.1481
    [17] 吕大昭. 非线性发展方程的丰富的Jacobi椭圆函数解. 物理学报, 2005, 54(10): 4501-4505. doi: 10.7498/aps.54.4501
    [18] 套格图桑, 斯仁道尔吉. BBM方程和修正的BBM方程新的精确孤立波解. 物理学报, 2004, 53(12): 4052-4060. doi: 10.7498/aps.53.4052
    [19] 徐桂琼, 李志斌. 构造非线性发展方程孤波解的混合指数方法. 物理学报, 2002, 51(5): 946-950. doi: 10.7498/aps.51.946
    [20] 刘春平. 一类非线性耦合方程的孤子解. 物理学报, 2000, 49(10): 1904-1908. doi: 10.7498/aps.49.1904
计量
  • 文章访问数:  3581
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-14
  • 修回日期:  2011-12-08
  • 刊出日期:  2012-07-05

构造非线性发展方程无穷序列类孤子精确解的一种方法

  • 1. 内蒙古民族大学数学学院, 通辽 028043;
  • 2. 内蒙古师范大学数学科学学院, 呼和浩特 010022
    基金项目: 国家自然科学基金资助项目(批准号: 10862003)、内蒙古自治区高等学校科学研究基金(批准号: NJZY12031)和 内蒙古自治区自然科学基金(批准号: 2010MS0111)资助的课题.

摘要: 辅助方程法已构造了非线性发展方程的有限多个新精确解. 本文为了构造非线性发展方程的无穷序列类孤子精确解, 分析总结了辅助方程法的构造性和机械化性特点. 在此基础上,给出了一种辅助方程的新解与Riccati方程之间的拟Bcklund变换. 选择了非线性发展方程的两种形式解,借助符号计算系统 Mathematica,用改进的(2+1) 维色散水波系统为应用实例,构造了该方程的无穷序列类孤子新精确解. 这些解包括无穷序列光滑类孤子解, 紧孤立子解和尖峰类孤立子解.

English Abstract

参考文献 (51)

目录

    /

    返回文章
    返回