搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺镧锆锡钛酸铅陶瓷极化强度变化量对电子发射电流强度的影响

黄旭东 冯玉军 唐帅

引用本文:
Citation:

掺镧锆锡钛酸铅陶瓷极化强度变化量对电子发射电流强度的影响

黄旭东, 冯玉军, 唐帅

The influence of variable quantity of polarization on the current intensity of the electron emission from La-doped Pb(Zr, Sn, Ti)O3 ferroelectric cathode

Huang Xu-Dong, Feng Yu-Jun, Tang Shuai
PDF
导出引用
  • 铁电阴极因其优异的电子发射性能在高功率微波管的电子束源、平板显示技术以及宇航推进器等领域 有着广阔应用前景而日益受到人们的重视.大量研究表明,铁电阴极电子发射性能受阴极材料性能的影响. 在激励电场作用下,铁电阴极材料会产生表面非屏蔽电荷而引起极化强度的变化, 这表明铁电阴极电子发射性能可能与阴极材料的极化强度变化量存在着某种关系. 为研究阴极材料极化强度变化量对铁电阴极电子发射性能的影响,以掺镧锆锡钛酸铅铁电和反铁电陶瓷样品作为阴极材料,通过正半周电滞回线测试得到阴极材料在不同电场强度下的极化强度变化量, 测量得到电子发射电流强度随激励电场的变化曲线,并分析了电子发射电流强度与极化强度变化量的关系. 结果表明,两种样品电子发射电流强度与极化强度变化量正相关.
    Ferroelectric cathodes exhibit huge potentials in high-power microwave tube electron beam source, panel display, and the propeller space navigation, due to their superior properties. The material properties of the ferroelectric cathode have been proved to have a significant influence on electron emission, which is indicated in recent research work. In the course of electron emission, the variation of polarization can be caused by non-shielded surface charge which is induced by high trigger voltage. A certain relationship may be found between polarization variation and current intensity of electron emission. To study the relationship between current intensity of electron emission and polarization variation in ferroelectric cathodes, the samples of lanthanum-doped lead zirconate stannate titanate ferroelectric and antiferroelectric ceramics are prepared by the method of solid state calcinations, and the polarization variations of the material under different voltages are measured in the positive half cycle test of hysteresis loop. The curve of the electron emission current intensity versus the trigger voltage is measured, and then the relationship between electron emission current intensity and polarization variation is investigated. The results show that the electron emission current intensities of the two samples are both directly proportional to the polarization variation.
    • 基金项目: 国家自然科学基金(批准号: 10875095)和国家重点基础研究发展计划(批准号: 2009CB623306) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10875095) and the State Key Development Program for Basic Research of China (Grant No. 2009CB623306).
    [1]

    Miller R C, Savage A 1960 J. Appl. Phys. 21 662

    [2]

    Gundel H, Reige H, Wilson E J N, Handerek J, Zioutas K 1989 Nucl. Instrum. Meth. Phys. Res. A 280 1

    [3]

    Chirko K, Krasik Y E, Sayapin A, Felsteiner J 2005 Vacuum 77 385

    [4]

    Sheng Z X, Feng Y J, Huang X, Xu Z, Sun X L 2008 Acta Phys. Sin. 57 4590 (in Chinese) [盛兆玄, 冯玉军, 黄璇, 徐卓, 孙新利 2008 物理学报 57 4590]

    [5]

    Rosenman G, Shur D, Krasik Y E, Dunaevsky A 2000 J. Appl. Phys. 88 6109

    [6]

    Riege H 1994 Nucl. Instrum. Meth. Phys. Res. A 340 80

    [7]

    Krasik Y E, Chirko K, Dunaevsky A, Gleizer J Z, Krokhmal A, Sayapin A, Felsteiner J 2003 IEEE Trans. Plasma Sci. 31 49

    [8]

    Sampayan S E, Caporaso G J, Holmes C L, Lauer E J, Prosnitz D, Trimble D O, Westenskow G A 1994 Nucl. Instrum. Meth. Phys. Res. A 340 90

    [9]

    Shannon D N J, Smith P W, Dobson P J, Shaw M J 1997 Appl. Phys. Lett. 70 1625

    [10]

    Zhang W M, Huebner W, Sampayan S E, Krogh M L 1998 J. Appl. Phys. 83 6055

    [11]

    Shur D, Rosenman G, Krasik Y E 2000 J. Appl. Phys. 88 6109

    [12]

    Feng Y J, Yao X, Xu Z 2000 Acta Phys. Sin. 49 1606 (in Chinese) [冯玉军, 姚熹, 徐卓 2000 物理学报 49 1606]

    [13]

    Shur D, Rosenman G, Krasik Y E 1997 Appl. Phys. Lett. 70 574

  • [1]

    Miller R C, Savage A 1960 J. Appl. Phys. 21 662

    [2]

    Gundel H, Reige H, Wilson E J N, Handerek J, Zioutas K 1989 Nucl. Instrum. Meth. Phys. Res. A 280 1

    [3]

    Chirko K, Krasik Y E, Sayapin A, Felsteiner J 2005 Vacuum 77 385

    [4]

    Sheng Z X, Feng Y J, Huang X, Xu Z, Sun X L 2008 Acta Phys. Sin. 57 4590 (in Chinese) [盛兆玄, 冯玉军, 黄璇, 徐卓, 孙新利 2008 物理学报 57 4590]

    [5]

    Rosenman G, Shur D, Krasik Y E, Dunaevsky A 2000 J. Appl. Phys. 88 6109

    [6]

    Riege H 1994 Nucl. Instrum. Meth. Phys. Res. A 340 80

    [7]

    Krasik Y E, Chirko K, Dunaevsky A, Gleizer J Z, Krokhmal A, Sayapin A, Felsteiner J 2003 IEEE Trans. Plasma Sci. 31 49

    [8]

    Sampayan S E, Caporaso G J, Holmes C L, Lauer E J, Prosnitz D, Trimble D O, Westenskow G A 1994 Nucl. Instrum. Meth. Phys. Res. A 340 90

    [9]

    Shannon D N J, Smith P W, Dobson P J, Shaw M J 1997 Appl. Phys. Lett. 70 1625

    [10]

    Zhang W M, Huebner W, Sampayan S E, Krogh M L 1998 J. Appl. Phys. 83 6055

    [11]

    Shur D, Rosenman G, Krasik Y E 2000 J. Appl. Phys. 88 6109

    [12]

    Feng Y J, Yao X, Xu Z 2000 Acta Phys. Sin. 49 1606 (in Chinese) [冯玉军, 姚熹, 徐卓 2000 物理学报 49 1606]

    [13]

    Shur D, Rosenman G, Krasik Y E 1997 Appl. Phys. Lett. 70 574

计量
  • 文章访问数:  3439
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-12
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

掺镧锆锡钛酸铅陶瓷极化强度变化量对电子发射电流强度的影响

  • 1. 西安交通大学电子陶瓷与器件教育部重点实验室, 西安 710049
    基金项目: 

    国家自然科学基金(批准号: 10875095)和国家重点基础研究发展计划(批准号: 2009CB623306) 资助的课题.

摘要: 铁电阴极因其优异的电子发射性能在高功率微波管的电子束源、平板显示技术以及宇航推进器等领域 有着广阔应用前景而日益受到人们的重视.大量研究表明,铁电阴极电子发射性能受阴极材料性能的影响. 在激励电场作用下,铁电阴极材料会产生表面非屏蔽电荷而引起极化强度的变化, 这表明铁电阴极电子发射性能可能与阴极材料的极化强度变化量存在着某种关系. 为研究阴极材料极化强度变化量对铁电阴极电子发射性能的影响,以掺镧锆锡钛酸铅铁电和反铁电陶瓷样品作为阴极材料,通过正半周电滞回线测试得到阴极材料在不同电场强度下的极化强度变化量, 测量得到电子发射电流强度随激励电场的变化曲线,并分析了电子发射电流强度与极化强度变化量的关系. 结果表明,两种样品电子发射电流强度与极化强度变化量正相关.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回