搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有缓变折射率的太赫兹宽带增透器件

陈吴玉婷 韩鹏昱 Kuo Mei-Ling Lin Shawn-Yu 张希成

引用本文:
Citation:

具有缓变折射率的太赫兹宽带增透器件

陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成

Terahertz broadband antireflection photonic device with graded refractive indices

Chen Yu-Ting-Wu, Han Peng-Yu, Kuo Mei-Ling, Lin Shawn-Yu, Zhang Xi-Cheng
PDF
导出引用
  • 用高阻硅制作的光学元件是太赫兹系统里常用的器件, 但是其高达3.42的相对折射率所引起的阻抗失配严重影响了太赫兹系统的功率, 因此研究人员尝试了各种各样的方式在高阻硅表面镀上有效的增透膜. 在太赫兹波段, 缺乏合适的材料是增透研究中亟需解决的一个重要问题. 介绍一种结构新颖的硅材料增透器件三维光子倒置光栅. 与普通高阻硅片相比, 当结构周期为15 m时, 该器件在0.27.3 THz范围内对太赫兹波具有明显的增透作用, 且覆盖了大部分太赫兹波段. 此外, 该器件的使用不受太赫兹偏振方向限制, 适用于大入射角情形, 并具有高达116.3%的相对3 dB带宽.
    High resistivity silicon is a very common optical component in a terahertz system. However, its high relative refractive index of 3.42 causes a large impedance mismatch at the silicon-to-air interface. This severely reduces the available power in a terahertz system which motivates researchers to find a good anti-reflection solution. In the terahertz region, the lack of proper materials for broadband anti-reflection severely hinders such a research development. A photonic grating with graded refractive indices is demonstrated on silicon. Compared wich the case of planar silicon wafer, the transmission is observed to increase from 0.2 THz to over 7.3 THz for a device with 15 m period, which covers most of the terahertz band. With a striking relative 3 dB bandwidth of 116.3%, the device is polarization-independent and can be used under a wide incidence angle.
    • 基金项目: 美国国家科学基金(批准号: 033314)和美国能源部(批准号: DE-FG02-06ER46347)资助的课题.
    • Funds: Project supported by the National Science Foundation of United States (Grant No. 0333314) and the United States Department of Energy Service (Grant No. DE-FG02-06ER46347).
    [1]

    Englert C R, Birk M, Maurer H 1999 IEEE Trans. Geosci. Remote Sens. 37 1997

    [2]

    Gatesman A J, Waldman J, Ji M, Musante C, Yngvesson S 2000 IEEE Microwave Guided Wave Lett. 10 264

    [3]

    Mcknight S W, Stewart K P, Drew H D, Moorjani K 1987 Infrared Phys. 27 327

    [4]

    Kroll J, Darmo J, Unterrainer K 2007 Opt. Express 15 6552

    [5]

    Thoman A, Kern A, Helm H, Walther M 2008 Phys. Rev. B 77 195405

    [6]

    Dobrowolski J A 2005 Proc. SPIE 5963 596303

    [7]

    Schallenberg U B 2006 Appl. Opt. 45 1507

    [8]

    Bruckner C, Pradarutti B, Stenzel O, Steinkopf R, Riehemann S, Notni G, Tunnermann A 2007 Opt. Express 15 779

    [9]

    Kuroo S, Shiraishi K, Sasho H, Yoda H, Muro K 2008 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Conference on Photonic Applications Systems and Technologies (San Jose: Optical Society of America) CThD7

    [10]

    Chen Y W, Han P Y, Zhang X C 2009 Appl. Phys. Lett. 94 041106

    [11]

    Huang Y, Chattopadhyay S, Jen Y, Peng C, Liu T, Hsu Y, Pan C, Lo H, Hsu C, Chang Y, Lee C, Chen K, Chen L 2007 Nature Nanotech. 2 770

    [12]

    Zhang J, Ade P A R, Mauskopf P, Moncelsi L, Savini G, Whitehouse N 2009 Appl. Opt. 48 6635

    [13]

    Chen H T, Zhou J, O'Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901

    [14]

    Poitras D, Dobrowolski J A 2004 Appl. Opt. 43 1286

    [15]

    Hosako I 2005 Appl. Opt. 44 3769

    [16]

    Chen M H, Chang H, Chang A S P, Lin S, Xi J Q, Schubert E F 2007 Appl. Opt. 46 6533

    [17]

    Chen Y W, Han P Y, Zhang X C, Kuo M L, Lin S Y 2010 Opt. Lett. 35 3159

    [18]

    Kadlec C, Kadlec F, Kuzel P, Blary K, Mounaix P 2008 Opt. Lett. 33 2275

    [19]

    Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K 2008 Appl. Phys. Lett. 92 011131

    [20]

    Ho I C, Guo X, Zhang X C 2010 Opt. Express 18 2872

    [21]

    Saleh B E A, Teich M C 2007 Fundamentals of Photonics (New Jersey: Wiley) p1138

    [22]

    Bruckner C, Kasebier T, Pradarutti B, Riehemann S, Notni G, Kley E, Tunnermann A 2009 Opt. Express 17 3063

  • [1]

    Englert C R, Birk M, Maurer H 1999 IEEE Trans. Geosci. Remote Sens. 37 1997

    [2]

    Gatesman A J, Waldman J, Ji M, Musante C, Yngvesson S 2000 IEEE Microwave Guided Wave Lett. 10 264

    [3]

    Mcknight S W, Stewart K P, Drew H D, Moorjani K 1987 Infrared Phys. 27 327

    [4]

    Kroll J, Darmo J, Unterrainer K 2007 Opt. Express 15 6552

    [5]

    Thoman A, Kern A, Helm H, Walther M 2008 Phys. Rev. B 77 195405

    [6]

    Dobrowolski J A 2005 Proc. SPIE 5963 596303

    [7]

    Schallenberg U B 2006 Appl. Opt. 45 1507

    [8]

    Bruckner C, Pradarutti B, Stenzel O, Steinkopf R, Riehemann S, Notni G, Tunnermann A 2007 Opt. Express 15 779

    [9]

    Kuroo S, Shiraishi K, Sasho H, Yoda H, Muro K 2008 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Conference on Photonic Applications Systems and Technologies (San Jose: Optical Society of America) CThD7

    [10]

    Chen Y W, Han P Y, Zhang X C 2009 Appl. Phys. Lett. 94 041106

    [11]

    Huang Y, Chattopadhyay S, Jen Y, Peng C, Liu T, Hsu Y, Pan C, Lo H, Hsu C, Chang Y, Lee C, Chen K, Chen L 2007 Nature Nanotech. 2 770

    [12]

    Zhang J, Ade P A R, Mauskopf P, Moncelsi L, Savini G, Whitehouse N 2009 Appl. Opt. 48 6635

    [13]

    Chen H T, Zhou J, O'Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901

    [14]

    Poitras D, Dobrowolski J A 2004 Appl. Opt. 43 1286

    [15]

    Hosako I 2005 Appl. Opt. 44 3769

    [16]

    Chen M H, Chang H, Chang A S P, Lin S, Xi J Q, Schubert E F 2007 Appl. Opt. 46 6533

    [17]

    Chen Y W, Han P Y, Zhang X C, Kuo M L, Lin S Y 2010 Opt. Lett. 35 3159

    [18]

    Kadlec C, Kadlec F, Kuzel P, Blary K, Mounaix P 2008 Opt. Lett. 33 2275

    [19]

    Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K 2008 Appl. Phys. Lett. 92 011131

    [20]

    Ho I C, Guo X, Zhang X C 2010 Opt. Express 18 2872

    [21]

    Saleh B E A, Teich M C 2007 Fundamentals of Photonics (New Jersey: Wiley) p1138

    [22]

    Bruckner C, Kasebier T, Pradarutti B, Riehemann S, Notni G, Kley E, Tunnermann A 2009 Opt. Express 17 3063

  • [1] 崔涛, 王康妮, 高凯歌, 钱林勇. 带有多孔二氧化硅间隔层的导模共振光栅实现染料激光器发射增强. 物理学报, 2021, 70(1): 014201. doi: 10.7498/aps.70.20201017
    [2] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [3] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [4] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [5] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [6] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [7] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究. 物理学报, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [8] 崔彬, 杨玉平, 马品, 杨雪莹, 马俪文. 全介质光栅在太赫兹波段的光调控特性. 物理学报, 2016, 65(7): 074209. doi: 10.7498/aps.65.074209
    [9] 闻铭武, 杨笑微, 王占山. 基于X射线塔尔博特效应的纳米光栅制作模拟研究. 物理学报, 2015, 64(11): 114102. doi: 10.7498/aps.64.114102
    [10] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [11] 马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元. 基于光谱椭偏仪的纳米光栅无损检测. 物理学报, 2014, 63(3): 039101. doi: 10.7498/aps.63.039101
    [12] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [13] 徐向东, 刘颖, 邱克强, 刘正坤, 洪义麟, 付绍军. HfO2顶层多层介质膜脉宽压缩光栅的离子束刻蚀. 物理学报, 2013, 62(23): 234202. doi: 10.7498/aps.62.234202
    [14] 陈泳屹, 秦莉, 佟存柱, 王立军. 金属-介质光栅结构表面等离子体耦合效率的模拟研究. 物理学报, 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
    [15] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光. 物理学报, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [16] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [17] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响. 物理学报, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [18] 郑致刚, 李文萃, 刘永刚, 宣 丽. 双重复合式液晶/聚合物电调谐光栅的制备. 物理学报, 2008, 57(11): 7344-7348. doi: 10.7498/aps.57.7344
    [19] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究. 物理学报, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [20] 王淮生. 啁啾超短脉冲光波照射下光栅Talbot效应的研究. 物理学报, 2005, 54(12): 5688-5691. doi: 10.7498/aps.54.5688
计量
  • 文章访问数:  4946
  • PDF下载量:  742
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-29
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

具有缓变折射率的太赫兹宽带增透器件

  • 1. Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy 12180, USA;
  • 2. Physics Department, Rensselaer Polytechnic Institute, Troy 12180, USA
    基金项目: 美国国家科学基金(批准号: 033314)和美国能源部(批准号: DE-FG02-06ER46347)资助的课题.

摘要: 用高阻硅制作的光学元件是太赫兹系统里常用的器件, 但是其高达3.42的相对折射率所引起的阻抗失配严重影响了太赫兹系统的功率, 因此研究人员尝试了各种各样的方式在高阻硅表面镀上有效的增透膜. 在太赫兹波段, 缺乏合适的材料是增透研究中亟需解决的一个重要问题. 介绍一种结构新颖的硅材料增透器件三维光子倒置光栅. 与普通高阻硅片相比, 当结构周期为15 m时, 该器件在0.27.3 THz范围内对太赫兹波具有明显的增透作用, 且覆盖了大部分太赫兹波段. 此外, 该器件的使用不受太赫兹偏振方向限制, 适用于大入射角情形, 并具有高达116.3%的相对3 dB带宽.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回