搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时空混沌系统参量辨识律的设计与投影同步研究

张新 吕翎 范鑫 吕娜

引用本文:
Citation:

时空混沌系统参量辨识律的设计与投影同步研究

张新, 吕翎, 范鑫, 吕娜

Design of parameter identification law and studies on projective synchronization of spatiotemporal chaotic system

Zhang Xin, Lü Ling, Fan Xin, Lü Na
PDF
导出引用
  • 研究了相互耦合的时空混沌系统的参量辨识与投影同步问题. 依据Lyapunov定理, 设计了参量辨识律和表征耦合强度的待定函数的自适应律, 对响应系统中的未知参量进行了有效辨识, 并完成了时空混沌系统的投影同步研究. 采用具有时空混沌行为的Burgers方程作为实例进行了仿真分析.
    The parameter identification and the projective synchronization between spatiotemporal chaotic systems are studied. The parameter identification law and the adaptive law of undetermined function representing the coupling strength are designed based on Lyapunov theorem. Not only the unknown parameters in responses system are identified, but also projective synchronization between spatiotemporal chaotic systems is realized. The Burgers equation with spatiotemporal chaos behavior is further taken as an example of simulation analysis.
    • 基金项目: 辽宁省自然科学基金(批准号:20082147)和辽宁省教育厅创新团队计划(批准号: 2008T108)资助的课题,
    • Funds: Project supported by the Natural Science Foundation of Liaoning Province, China(Grant No. 20082147), and the Innovative Team Program of Liaoning Educational Committee, China (Grant No. 2008T108).
    [1]

    Yamada T, Fujisaka H 1983 Prog. Theor. Phys. 70 1240

    [2]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [3]

    Fu S H, Pei L J 2010 Acta Phys. Sin. 59 5985 (in Chinese) [付士慧, 裴利军 2010 物理学报 59 5985]

    [4]

    Zhang L P, Jiang H B 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 2027

    [5]

    Kocarev L, Parlitz U, Brown R 2000 Phys. Rev. E 61 3716

    [6]

    Chen H K 2005 Chaos, Solitons and Fractals 25 1049

    [7]

    Wu X F, Chen G R, Cai J P 2007 Physica D 229 52

    [8]

    Liu F C, Song J Q 2008 Acta Phys. Sin. 57 4729 (in Chinese) [刘福才, 宋佳秋 2008 物理学报 57 4729]

    [9]

    Lü J H, Zhou T S, Zhou S C 2002 Chaos, Solitons and Fractals 14 529

    [10]

    Brandt S F, Dellen B K, Wessel R 2006 Phys. Rev. Lett. 96 034104

    [11]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 物理学报 58 4669]

    [12]

    Li X J, Xu Z Y, Xie Q C, Wang B 2010 Acta Phys. Sin. 59 1532 (in Chinese) [李小娟, 徐振源, 谢青春, 王兵 2010 物理学报 59 1532]

    [13]

    Park J H 2005 Chaos, Solitons and Fractals 25 333

    [14]

    Yassen M T 2006 Phys. Lett. A 350 36

    [15]

    Bowong S 2007 Commun. Nonlinear Sci. Numer. Simulat. 12 976

    [16]

    Huang L L, Feng R P, Wang M 2004 Phys. Lett. A 320 271

    [17]

    Yu W G 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 2880

    [18]

    Zhu Q Y, Ma Y W 2000 Comput. Mech. 17 379 (in Chinese) [朱庆勇, 马延文 2000 计算力学学报 17 379]

  • [1]

    Yamada T, Fujisaka H 1983 Prog. Theor. Phys. 70 1240

    [2]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [3]

    Fu S H, Pei L J 2010 Acta Phys. Sin. 59 5985 (in Chinese) [付士慧, 裴利军 2010 物理学报 59 5985]

    [4]

    Zhang L P, Jiang H B 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 2027

    [5]

    Kocarev L, Parlitz U, Brown R 2000 Phys. Rev. E 61 3716

    [6]

    Chen H K 2005 Chaos, Solitons and Fractals 25 1049

    [7]

    Wu X F, Chen G R, Cai J P 2007 Physica D 229 52

    [8]

    Liu F C, Song J Q 2008 Acta Phys. Sin. 57 4729 (in Chinese) [刘福才, 宋佳秋 2008 物理学报 57 4729]

    [9]

    Lü J H, Zhou T S, Zhou S C 2002 Chaos, Solitons and Fractals 14 529

    [10]

    Brandt S F, Dellen B K, Wessel R 2006 Phys. Rev. Lett. 96 034104

    [11]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 物理学报 58 4669]

    [12]

    Li X J, Xu Z Y, Xie Q C, Wang B 2010 Acta Phys. Sin. 59 1532 (in Chinese) [李小娟, 徐振源, 谢青春, 王兵 2010 物理学报 59 1532]

    [13]

    Park J H 2005 Chaos, Solitons and Fractals 25 333

    [14]

    Yassen M T 2006 Phys. Lett. A 350 36

    [15]

    Bowong S 2007 Commun. Nonlinear Sci. Numer. Simulat. 12 976

    [16]

    Huang L L, Feng R P, Wang M 2004 Phys. Lett. A 320 271

    [17]

    Yu W G 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 2880

    [18]

    Zhu Q Y, Ma Y W 2000 Comput. Mech. 17 379 (in Chinese) [朱庆勇, 马延文 2000 计算力学学报 17 379]

计量
  • 文章访问数:  2763
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-28
  • 修回日期:  2012-01-10
  • 刊出日期:  2012-08-05

时空混沌系统参量辨识律的设计与投影同步研究

  • 1. 辽宁师范大学物理与电子技术学院, 大连 116029
    基金项目: 

    辽宁省自然科学基金(批准号:20082147)和辽宁省教育厅创新团队计划(批准号: 2008T108)资助的课题,

摘要: 研究了相互耦合的时空混沌系统的参量辨识与投影同步问题. 依据Lyapunov定理, 设计了参量辨识律和表征耦合强度的待定函数的自适应律, 对响应系统中的未知参量进行了有效辨识, 并完成了时空混沌系统的投影同步研究. 采用具有时空混沌行为的Burgers方程作为实例进行了仿真分析.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回