搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体材料AAl2C4(A=Zn, Cd, Hg; C=S, Se)的电子结构和光学性质

陈懂 肖河阳 加伟 陈虹 周和根 李奕 丁开宁 章永凡

引用本文:
Citation:

半导体材料AAl2C4(A=Zn, Cd, Hg; C=S, Se)的电子结构和光学性质

陈懂, 肖河阳, 加伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡

Electronic structures and optical properties of AAl2C4 (A=Zn, Cd, Hg; C=S, Se) semiconductors

Chen Dong, Xiao He-Yang, Jia Wei, Chen Hong, Zhou He-Gen, Li Yi, Ding Kai-Ning, Zhang Yong-Fan
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法, 对具有缺陷型黄铜矿结构的半导体材料AⅡAl2C4Ⅵ(A=Zn, Cd, Hg; C =S, Se)的构型和电子结构进行研究, 并系统考察了各晶体的光学性质. 对于线性光学性质, 五种晶体在红外区和部分可见光区具有良好的透光性能, 其中HgAl2S4和HgAl2Se4晶体具有适中的双折射率. 在非线性光学性质方面, 该类晶体倍频效应较强, 理论预测得到的二阶静态倍频系数均较大(20 pm/V). 体系的倍频效应主要来源于价带顶附近以S/Se 价p轨道为主要成分的能带向含有较多Al/Hg 价p成分的空带之间的跃迁. 通过与已商业化的AgGaC2晶体光学性质的对比, 结果表明HgAl2S4和HgAl2Se4是一类性能优良的红外非线性光学晶体材料.
    First-principles density functional calculations are performed to study the geometries, the electronic and the optical properties of AⅡAl2C4Ⅵ (A =Zn, Cd, Hg; C = S, Se) semiconductors each with a defect chalcopyrite structure. For the linear optical properties, five compounds show good transmissions of light in the IR and part of visible regions, and among them HgAl2S4 and HgAl2Se4 possess moderate birefringences. For the nonlinear optical properties, the strong second harmonic generation (SHG) response can be expected for these crystals, and the large static SHG coefficients ( 20 pm/V) are predicted in this work. The SHG response of AⅡAl2C4Ⅵ semiconductors can be attributed to the transitions from the bands near the top of valence band which are derived from S/Se p states to the unoccupied bands that are contributed by p states of Al and Hg atoms. By comparing with the optical properties of the commercialized AgGaC2 crystals, our results indicate that HgAl2S4 and HgAl2Se4 compounds are good candidates for the second-order nonlinear optical crystals in the IR region.
    • 基金项目: 国家自然科学基金重大研究计划培育项目(批准号: 90922022)和福州大学科技发展基金(批准号: 2008-XQ-07)资助的课题.
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 90922022), and the Science and Technology fund of Fuzhou University (Grant No. 2008-XQ-07).
    [1]

    Georgobiani A N, Radautsan S I, Tiginyanu I M 1985 Sov. Phys. Semicond. 19 121

    [2]

    Radautsan S I, Tiginyanu I M 1993 Jpn. J. Appl. Phys. 32 5

    [3]

    Joshia N V, Luengo J, Vera F 2007 Mater. Lett. 61 1926

    [4]

    Levine B F, Bethea C G, Kasper H M, Thiel F A 1976 IEEE J. QE-10 367

    [5]

    Zeng Y Z, Huang M C 2005 Acta Phys. Sin. 54 1750 (in Chinese) [曾永志, 黄美纯 2005 物理学报 54 1750]

    [6]

    Feng J, Xiao B, Chen J C 2007 Acta Phys. Sin. 56 5990 (in Chinese) [冯晶, 肖冰, 陈敬超 2007 物理学报 56 5990]

    [7]

    Wan W J, Yao R H, Geng K W 2011 Acta Phys. Sin. 60 067103 (in Chinese) [万文坚, 姚若何, 耿魁伟 2011 物理学报 60 067103]

    [8]

    Xu C M, Sun Y, Li F Y, Zhang L, Xue Y M, He Q, Liu H T 2007 Chin. Phys. 16 788

    [9]

    Jiang X S, Lambrecht W R L 2004 Phys. Rev. B 69 035201

    [10]

    Mishra S, Ganguli B 2011 J. Solid. State. Chem. 184 1614

    [11]

    Verma U P, Singh P, Jensen P 2011 Phys. Status Solidi B 248 1682

    [12]

    Jiang X S, Yan Y C, Yuan S M, Mi S, Niu Z G, Liang J Q 2010 Chin. Phys. B 19 107104

    [13]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [14]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [15]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [16]

    Tributsch H Z 1977 Naturforsch A 32A 972

    [17]

    Lin Z S, Wang Z Z, Chen C T, Li M X 2001 Acta Phys. Sin. 50 1145 (in Chinese) [林哲帅, 王志中, 陈创天, 李明宪 2001 物理学报 50 1145]

    [18]

    Aversa C, Sipe J E 1995 Phys. Rev. B 52 14636

    [19]

    Rashkeev S N, Lambrecht W R. L, Segall B 1998 Phys. Rev. B 57 3905.

    [20]

    Ni B L, Zhou H G, Jian J Q, Li Y, Zhang Y F 2010 Acta Phys. Chim. Sin. 26 3052 (in Chinese) [倪碧莲, 周和根, 姜俊全, 李奕, 章永凡 2010 物理化学学报 26 3052]

    [21]

    Huang Y Z, Wu L M, Wu X T, Li L H, Chen L, Zhang Y F 2010 J. Am. Chem. Soc. 132 12788

    [22]

    Krauss G, Kraemer V, Eifler A, Riede V, Wenger S 1997 Crystal Research and Technology 32(2) 223

    [23]

    Georgobiani A N, Radautsan S I, Tiginyanu M 1985 Sov. Phys. Semicond. 19 121

    [24]

    Schwer H, Kraemer V, 1990 Zeitschrift für Kristallographie 190 103

    [25]

    Schwer H, Kraemer V 1991 Zeitschrift für Kristallographie 194 121

    [26]

    Hahn H, Frank G, Klingler W, Stoerger A D, Stoerger G 1955 Zeitschrift fuer Anorganische und Allgemeine Chemie 279 241

    [27]

    Hyun S C, Kim C D, Choe S H, Jin M S, Lee C I, Goh J M, Oh S K, Song H J, Kim W T 2000 Journal of the Korean Physical Society 37 295

    [28]

    Krauä G, Krämer V, Eifler A, Reide V, Wenger S 1997 Cryst. Res. Technol. 32 223

    [29]

    Levine B F, Bethea C G, Kasper H M 1974 IEEE J. Quantum Electron. QE-10 904

    [30]

    Rashkeev S N, Lambrecht W R L 2001 Phys. Rev. B 63 165

    [31]

    Basikov V V, Pivovarov O N, Skokov Y V, Skrebneva O V, Trotsenko N K 1975 Kvantovaya Elektron 2 618

    [32]

    Byer R L, Choy M M, Herbst R L, Cgemla D S, Feigelson R S 1974 Appl. Phys. Lett. 24 65

    [33]

    Dmitriev V G, Gurzadyan G G, Nikogosyan D 1991 Handbook of Nonlinear Optical Crystals (Berlin : Springer-Verlag) p132

    [34]

    David R L 2002 Handbook of Chemistry and Physics (Vol.12) (Boca Raton: CRC Press LLC) p169

  • [1]

    Georgobiani A N, Radautsan S I, Tiginyanu I M 1985 Sov. Phys. Semicond. 19 121

    [2]

    Radautsan S I, Tiginyanu I M 1993 Jpn. J. Appl. Phys. 32 5

    [3]

    Joshia N V, Luengo J, Vera F 2007 Mater. Lett. 61 1926

    [4]

    Levine B F, Bethea C G, Kasper H M, Thiel F A 1976 IEEE J. QE-10 367

    [5]

    Zeng Y Z, Huang M C 2005 Acta Phys. Sin. 54 1750 (in Chinese) [曾永志, 黄美纯 2005 物理学报 54 1750]

    [6]

    Feng J, Xiao B, Chen J C 2007 Acta Phys. Sin. 56 5990 (in Chinese) [冯晶, 肖冰, 陈敬超 2007 物理学报 56 5990]

    [7]

    Wan W J, Yao R H, Geng K W 2011 Acta Phys. Sin. 60 067103 (in Chinese) [万文坚, 姚若何, 耿魁伟 2011 物理学报 60 067103]

    [8]

    Xu C M, Sun Y, Li F Y, Zhang L, Xue Y M, He Q, Liu H T 2007 Chin. Phys. 16 788

    [9]

    Jiang X S, Lambrecht W R L 2004 Phys. Rev. B 69 035201

    [10]

    Mishra S, Ganguli B 2011 J. Solid. State. Chem. 184 1614

    [11]

    Verma U P, Singh P, Jensen P 2011 Phys. Status Solidi B 248 1682

    [12]

    Jiang X S, Yan Y C, Yuan S M, Mi S, Niu Z G, Liang J Q 2010 Chin. Phys. B 19 107104

    [13]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [14]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [15]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [16]

    Tributsch H Z 1977 Naturforsch A 32A 972

    [17]

    Lin Z S, Wang Z Z, Chen C T, Li M X 2001 Acta Phys. Sin. 50 1145 (in Chinese) [林哲帅, 王志中, 陈创天, 李明宪 2001 物理学报 50 1145]

    [18]

    Aversa C, Sipe J E 1995 Phys. Rev. B 52 14636

    [19]

    Rashkeev S N, Lambrecht W R. L, Segall B 1998 Phys. Rev. B 57 3905.

    [20]

    Ni B L, Zhou H G, Jian J Q, Li Y, Zhang Y F 2010 Acta Phys. Chim. Sin. 26 3052 (in Chinese) [倪碧莲, 周和根, 姜俊全, 李奕, 章永凡 2010 物理化学学报 26 3052]

    [21]

    Huang Y Z, Wu L M, Wu X T, Li L H, Chen L, Zhang Y F 2010 J. Am. Chem. Soc. 132 12788

    [22]

    Krauss G, Kraemer V, Eifler A, Riede V, Wenger S 1997 Crystal Research and Technology 32(2) 223

    [23]

    Georgobiani A N, Radautsan S I, Tiginyanu M 1985 Sov. Phys. Semicond. 19 121

    [24]

    Schwer H, Kraemer V, 1990 Zeitschrift für Kristallographie 190 103

    [25]

    Schwer H, Kraemer V 1991 Zeitschrift für Kristallographie 194 121

    [26]

    Hahn H, Frank G, Klingler W, Stoerger A D, Stoerger G 1955 Zeitschrift fuer Anorganische und Allgemeine Chemie 279 241

    [27]

    Hyun S C, Kim C D, Choe S H, Jin M S, Lee C I, Goh J M, Oh S K, Song H J, Kim W T 2000 Journal of the Korean Physical Society 37 295

    [28]

    Krauä G, Krämer V, Eifler A, Reide V, Wenger S 1997 Cryst. Res. Technol. 32 223

    [29]

    Levine B F, Bethea C G, Kasper H M 1974 IEEE J. Quantum Electron. QE-10 904

    [30]

    Rashkeev S N, Lambrecht W R L 2001 Phys. Rev. B 63 165

    [31]

    Basikov V V, Pivovarov O N, Skokov Y V, Skrebneva O V, Trotsenko N K 1975 Kvantovaya Elektron 2 618

    [32]

    Byer R L, Choy M M, Herbst R L, Cgemla D S, Feigelson R S 1974 Appl. Phys. Lett. 24 65

    [33]

    Dmitriev V G, Gurzadyan G G, Nikogosyan D 1991 Handbook of Nonlinear Optical Crystals (Berlin : Springer-Verlag) p132

    [34]

    David R L 2002 Handbook of Chemistry and Physics (Vol.12) (Boca Raton: CRC Press LLC) p169

  • [1] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [2] 范达志, 刘贵立, 卫琳. 扭转形变对石墨烯吸附O原子电学和光学性质影响的电子理论研究. 物理学报, 2017, 66(24): 246301. doi: 10.7498/aps.66.246301
    [3] 刘欢, 李公平, 许楠楠, 林俏露, 杨磊, 王苍龙. Cu离子注入单晶TiO2微结构及光学性质的模拟研究. 物理学报, 2016, 65(20): 206102. doi: 10.7498/aps.65.206102
    [4] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [5] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应. 物理学报, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [6] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [7] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究. 物理学报, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [8] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [9] 李春霞, 党随虎. Ag, Zn掺杂对CdS电子结构和光学性质的影响. 物理学报, 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [10] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [11] 于峰, 王培吉, 张昌文. Al掺杂SnO2 材料电子结构和光学性质. 物理学报, 2011, 60(2): 023101. doi: 10.7498/aps.60.023101
    [12] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [13] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [14] 孔祥兰, 侯芹英, 苏希玉, 齐延华, 支晓芬. Ba0.5Sr0.5TiO3电子结构和光学性质的第一性原理研究. 物理学报, 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [15] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [16] 季正华, 曾祥华, 胡永金, 谭明秋. 高压下ZnSe的电子结构和光学性质. 物理学报, 2008, 57(6): 3753-3759. doi: 10.7498/aps.57.3753
    [17] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪. 萤石结构TiO2的电子结构和光学性质. 物理学报, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [18] 胡永金, 崔 磊, 赵 江, 滕玉永, 曾祥华, 谭明秋. 高压下ZnS的电子结构和性质. 物理学报, 2007, 56(7): 4079-4084. doi: 10.7498/aps.56.4079
    [19] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究. 物理学报, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
计量
  • 文章访问数:  4966
  • PDF下载量:  1065
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-07
  • 修回日期:  2011-11-25
  • 刊出日期:  2012-06-05

半导体材料AAl2C4(A=Zn, Cd, Hg; C=S, Se)的电子结构和光学性质

  • 1. 福建省光催化重点实验室-省部共建国家重点实验室培育基地, 福州大学化学化工学院, 福州 350108
    基金项目: 国家自然科学基金重大研究计划培育项目(批准号: 90922022)和福州大学科技发展基金(批准号: 2008-XQ-07)资助的课题.

摘要: 采用基于密度泛函理论的第一性原理方法, 对具有缺陷型黄铜矿结构的半导体材料AⅡAl2C4Ⅵ(A=Zn, Cd, Hg; C =S, Se)的构型和电子结构进行研究, 并系统考察了各晶体的光学性质. 对于线性光学性质, 五种晶体在红外区和部分可见光区具有良好的透光性能, 其中HgAl2S4和HgAl2Se4晶体具有适中的双折射率. 在非线性光学性质方面, 该类晶体倍频效应较强, 理论预测得到的二阶静态倍频系数均较大(20 pm/V). 体系的倍频效应主要来源于价带顶附近以S/Se 价p轨道为主要成分的能带向含有较多Al/Hg 价p成分的空带之间的跃迁. 通过与已商业化的AgGaC2晶体光学性质的对比, 结果表明HgAl2S4和HgAl2Se4是一类性能优良的红外非线性光学晶体材料.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回