搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导材料NbS2上临界磁场的理论分析

黄海 陆艳艳 王文杰

引用本文:
Citation:

超导材料NbS2上临界磁场的理论分析

黄海, 陆艳艳, 王文杰

Theoretical analysis on the upper critical field of superconductor NbS2

Huang Hai, Lu Yan-Yan, Wang Wen-Jie
PDF
导出引用
  • 根据两带Ginzburg-Landau 理论计算了层状超导材料NbS2的上临界磁场, 以及上临界磁场各向异性参数随温度的变化情况, 并将NbS2与MgB2, NbSe2上临界磁场的各向异性进行比较. 所得计算结果与已有实验数据符合得很好, 充分说明了NbS2的超导电性具有两能隙特征. NbS2上临界磁场各向异性参数在5.0 K附近逐渐变小, 这与MgB2和NbSe2有相似之处. 但NbS2的上临界磁场各向异性参数大约为7.3, 明显大于MgB2和NbSe2. 计算结果还表明, NbS2较大能隙所对应能带的有效质量比约为54, 另一能带的有效质量基本为各向同性.
    From the two-band Ginzburg-Landau theory, we study the temperature dependence of upper critical field on the layered superconductor NbS2. The temperature dependence of the anisotropic parameter for upper critical filed is also obtained. All the results fit the experimental data well in a broad temperature range. Thus our results show strong evidence that two-gap scenario is better to account for the superconductivity of NbS2. The anisotropic parameter of the upper critical field for NbS2 starts to decrease from 5.0 K, and this behavior is similar to those of MgB2 and NbSe2. However for NbS2 this number is about 7.3, which is much greater than the ones in MgB2 and NbSe2. The results also show that the band with the larger gap exhibits that the effective mass ratio between the in-plane and out-of-plane direction is about 54, and the other band indicates that the effective mass ratio is almost isotropic.
    • 基金项目: 中央高校基本科研业务费(批准号: 12ZP11)资助的课题.
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. 12ZP11).
    [1]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 63 410

    [2]

    Kortus J, Mazin I I, Be1ashchenko K D, Antropov V P, Boyer L L 2010 Phys. Rev. Lett. 86 4656

    [3]

    Liu A Y, Mazin L Y, Kortus J 2001 Phys. Rev. Lett. 87 087005

    [4]

    Bouquet F, Fisher R A, Phillips N E 2001 Phys. Rev. Lett. 87 047001

    [5]

    Chen X K, Konstantinovich M J, Irwin J C 2001 Phys. Rev. Lett. 87 157002

    [6]

    Matthias B T, Geballe T H, Compton V B 1963 Rev. Mod. Phys. 35 1

    [7]

    Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, Takagi H 2001 Science 294 2518

    [8]

    Fletcher J D, Carrington A, Diener P, Rodiere P, Brison J P, Prozorov R, Olheiser T, Giannetta R W 2007 Phys. Rev. Lett. 98 057003

    [9]

    Huang C L, Lin J Y, Chang Y T, Sun C P, Shen H Y, Chou C C, Berger H, Lee T K, Yang H D 2007 Phys. Rev. B 76 212504

    [10]

    Hambourger P D, DiSalvo F J 1980 Physica B 99 173

    [11]

    Thompson A H, Gamble F R, Koehler R F 1972 Phys. Rev. B 5 2811

    [12]

    DiSalvo F J, Bagley B G, Voorhoeve J M, Waszczak J V 1973 J. Phys. Chem. Solids 34 1357

    [13]

    Edwards J, Frindt R F 1971 J. Phys. Chem. Solids 32 2217

    [14]

    Prober D E, Schwall R E, Beasley M R 1980 Phys. Rev. B 21 2717

    [15]

    Pfalzgraf B W, Spreckels H 1987 J. Phys. C 27 4359

    [16]

    Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734

    [17]

    Guillamon I, Suderow H, Vieira S, Cario L, Diener P, Rodiere P 2008 Phys. Rev. Lett. 101 166407

    [18]

    Kacmarc J, Pribulova Z, Marcenat C, Klein T, Rodiere P, Cario L, Samuely P 2010 Phys. Rev. B 82 014518

    [19]

    Zhitomirsky M E, Dao V H 2004 Phys. Rev. B 69 054508

    [20]

    Askerzade I N, Gencer A, Guclu N 2002 Supercond. Sci. Technol. 15 13

    [21]

    Doh H, Sigrist M, Cho B K, Lee S 1999 Phys. Rev. Lett. 83 5350

    [22]

    Tinkham M 1996 Introduction to Superconductivity (2nd Ed.) (New York: McGraw-Hill) p134

    [23]

    Yang D S, Wu B M, Li B, Zheng W H, Li S Y, Fan R, Chen X H, Cao L Z 2003 Acta Phys. Sin. 52 683 (in Chinese) [杨东升, 吴柏枚, 李波, 郑卫华, 李世燕, 樊荣, 陈仙辉, 曹烈兆 2003 物理学报 52 683]

    [24]

    Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011 物理学报 60 087401]

  • [1]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 63 410

    [2]

    Kortus J, Mazin I I, Be1ashchenko K D, Antropov V P, Boyer L L 2010 Phys. Rev. Lett. 86 4656

    [3]

    Liu A Y, Mazin L Y, Kortus J 2001 Phys. Rev. Lett. 87 087005

    [4]

    Bouquet F, Fisher R A, Phillips N E 2001 Phys. Rev. Lett. 87 047001

    [5]

    Chen X K, Konstantinovich M J, Irwin J C 2001 Phys. Rev. Lett. 87 157002

    [6]

    Matthias B T, Geballe T H, Compton V B 1963 Rev. Mod. Phys. 35 1

    [7]

    Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, Takagi H 2001 Science 294 2518

    [8]

    Fletcher J D, Carrington A, Diener P, Rodiere P, Brison J P, Prozorov R, Olheiser T, Giannetta R W 2007 Phys. Rev. Lett. 98 057003

    [9]

    Huang C L, Lin J Y, Chang Y T, Sun C P, Shen H Y, Chou C C, Berger H, Lee T K, Yang H D 2007 Phys. Rev. B 76 212504

    [10]

    Hambourger P D, DiSalvo F J 1980 Physica B 99 173

    [11]

    Thompson A H, Gamble F R, Koehler R F 1972 Phys. Rev. B 5 2811

    [12]

    DiSalvo F J, Bagley B G, Voorhoeve J M, Waszczak J V 1973 J. Phys. Chem. Solids 34 1357

    [13]

    Edwards J, Frindt R F 1971 J. Phys. Chem. Solids 32 2217

    [14]

    Prober D E, Schwall R E, Beasley M R 1980 Phys. Rev. B 21 2717

    [15]

    Pfalzgraf B W, Spreckels H 1987 J. Phys. C 27 4359

    [16]

    Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734

    [17]

    Guillamon I, Suderow H, Vieira S, Cario L, Diener P, Rodiere P 2008 Phys. Rev. Lett. 101 166407

    [18]

    Kacmarc J, Pribulova Z, Marcenat C, Klein T, Rodiere P, Cario L, Samuely P 2010 Phys. Rev. B 82 014518

    [19]

    Zhitomirsky M E, Dao V H 2004 Phys. Rev. B 69 054508

    [20]

    Askerzade I N, Gencer A, Guclu N 2002 Supercond. Sci. Technol. 15 13

    [21]

    Doh H, Sigrist M, Cho B K, Lee S 1999 Phys. Rev. Lett. 83 5350

    [22]

    Tinkham M 1996 Introduction to Superconductivity (2nd Ed.) (New York: McGraw-Hill) p134

    [23]

    Yang D S, Wu B M, Li B, Zheng W H, Li S Y, Fan R, Chen X H, Cao L Z 2003 Acta Phys. Sin. 52 683 (in Chinese) [杨东升, 吴柏枚, 李波, 郑卫华, 李世燕, 樊荣, 陈仙辉, 曹烈兆 2003 物理学报 52 683]

    [24]

    Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011 物理学报 60 087401]

  • [1] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性. 物理学报, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [2] 刘敏霞, 何林, 张耿, 叶海, 黄晓园, 徐永钊. 两带超导体LaNiC2上临界磁场的理论分析. 物理学报, 2016, 65(3): 037401. doi: 10.7498/aps.65.037401
    [3] 高继华, 王宇, 张超, 杨海朋, 戈早川. 复Ginzburg-Landau方程中模螺旋波的稳定性研究. 物理学报, 2014, 63(2): 020503. doi: 10.7498/aps.63.020503
    [4] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化. 物理学报, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [5] 高继华, 谢伟苗, 高加振, 杨海朋, 戈早川. 耦合复金兹堡-朗道(Ginzburg-Landau)方程中的模螺旋波. 物理学报, 2012, 61(13): 130506. doi: 10.7498/aps.61.130506
    [6] 吕翎, 李钢, 徐文, 吕娜, 范鑫. 复Ginzburg-Landau方程时空混沌的网络同步与参量辨识. 物理学报, 2012, 61(6): 060507. doi: 10.7498/aps.61.060507
    [7] 刘敏霞. 用两带Ginzburg-Landau理论分析两带超导体Lu2Fe3Si5的表面临界磁场. 物理学报, 2011, 60(1): 017401. doi: 10.7498/aps.60.017401
    [8] 莫嘉琪, 陈丽华. 一类Landau-Ginzburg-Higgs扰动方程孤子的近似解. 物理学报, 2008, 57(8): 4646-4648. doi: 10.7498/aps.57.4646
    [9] 丁万山, 席 崚, 柳莲花. 基于复Ginzburg-Landau方程的双核光纤中调制不稳定性的仿真研究. 物理学报, 2008, 57(12): 7705-7711. doi: 10.7498/aps.57.7705
    [10] 冯 杰, 徐文成, 刘伟慈, 李书贤, 刘颂豪. 高阶色散效应常系数Ginzburg-Landau方程自相似脉冲演化的解析分析. 物理学报, 2008, 57(8): 4978-4983. doi: 10.7498/aps.57.4978
    [11] 莫嘉琪, 张伟江, 何 铭. 非线性广义Landau-Ginzburg-Higgs方程孤子解的变分迭代解法. 物理学报, 2007, 56(4): 1847-1850. doi: 10.7498/aps.56.1847
    [12] 冯 杰, 徐文成, 李书贤, 陈伟成, 宋 方, 申民常, 刘颂豪. 色散渐减光纤中Ginzburg-Landau方程的自相似脉冲演化的解析解. 物理学报, 2007, 56(10): 5835-5842. doi: 10.7498/aps.56.5835
    [13] 陈荣华, 朱明原, 李 瑛, 李文献, 金红明, 窦士学. 脉冲磁场处理对碳纳米管掺杂MgB2线材临界电流密度的影响. 物理学报, 2006, 55(9): 4878-4882. doi: 10.7498/aps.55.4878
    [14] 莫嘉琪, 王 辉, 林一骅. 广义Landau-Ginzburg-Higgs方程孤子解的扰动理论. 物理学报, 2005, 54(12): 5581-5584. doi: 10.7498/aps.54.5581
    [15] 潘留仙, 左伟明, 颜家壬. Landau-Ginzburg-Higgs方程的微扰理论. 物理学报, 2005, 54(1): 1-5. doi: 10.7498/aps.54.1
    [16] 汪凯戈. 激光系统的Ginzburg-Landau方程及其相位扩散方程. 物理学报, 1993, 42(2): 256-263. doi: 10.7498/aps.42.256
    [17] 厉彦民, 章立源. 对角无序对局域电子配对系统的上临界磁场的影响. 物理学报, 1988, 37(6): 1030-1035. doi: 10.7498/aps.37.1030
    [18] 冯世平. CeCu2Si2的超导临界温度随压力变化的理论解释. 物理学报, 1986, 35(5): 687-690. doi: 10.7498/aps.35.687
    [19] 吴杭生. 合金薄膜的临界磁场. 物理学报, 1965, 21(1): 132-139. doi: 10.7498/aps.21.132
    [20] 雷啸霖, 吴杭生. 在强磁场中金属薄膜的超导电理论(Ⅱ)——超导薄膜的临界磁场. 物理学报, 1964, 20(10): 991-1002. doi: 10.7498/aps.20.991
计量
  • 文章访问数:  6464
  • PDF下载量:  765
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-12
  • 修回日期:  2012-02-13
  • 刊出日期:  2012-08-05

/

返回文章
返回