搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sr掺杂钙钛矿型氧化物Y1-xSrxCoO3的溶胶-凝胶制备及电阻率温度关系研究

刘义 张清 李海金 李勇 刘厚通

引用本文:
Citation:

Sr掺杂钙钛矿型氧化物Y1-xSrxCoO3的溶胶-凝胶制备及电阻率温度关系研究

刘义, 张清, 李海金, 李勇, 刘厚通

Temperature dependence of electrical resistivity for Sr-doped perovskite-type oxide Y1-xSrxCoO3 prepared by sol-gel process

Liu Yi, Zhang Qing, Li Hai-Jin, Li Yong, Liu Hou-Tong
PDF
导出引用
  • 采用溶胶-凝胶方法成功制备了Sr的替代化合物Y1-xSrxCoO3 (x=0, 0.01, 0.05, 0.10, 0.15, 0.20), 系统地研究了20–720 K温度范围内Y1-xSrxCoO3的电阻率温度关系. 研究表明, 随着Sr的替代含量的增加, Y1-xSrxCoO3的电阻率迅速地降低, 这主要是由于载流子浓度的增加引起. 样品x=0和0.01在低于330和260 K的温度范围内, 电阻率与温度之间满足指数关系lnρ∝1/T, 获得导电激活能分别为0.2950和0.1461 eV. 然而, 实验显示lnρ∝1/T关系仅成立于重掺杂样品的高温区; 在低温区莫特定律lnρ∝T-1/4成立, 且表明重掺杂引入势垒, 导致大量局域态的形成. 根据莫特T-1/4定律拟合实验数据, 评估了局域态密度N(EF), 它随着掺杂量的增加而增加.
    The temperature dependences of electrical resistivity for Sr-substituted compounds Y1-xSrxCoO3 (x=0, 0.01, 0.05, 0.10, 0.15, 0.20), prepared successfully by sol-gel process, are investigated in a temperature range from 20 to 720 K. The results indicate that with the increase of doping content of Sr the resistivity of Y1-xSrxCoO3 decreases remarkably, which is found to be caused by the increase of carrier concentration. In a temperature range below 330 and 260 K for the sample x=0 and 0.01, the relationship of resistivity versus temperature processes exponential relationship lnρ∝1/T, with conduction activation energy 0.2950 and 0.1461 eV for the sample x=0 and 0.01 respectively. Moreover, experiments show that the relationship lnρ∝1/T exists only in high-temperature regime for the heavily doped samples; at low temperatures Mott’s law lnρ∝T-1/4 is observed, indicating that heavy doping produces strong potential, which leads to the formation of considerable localized state. By fitting the experimental data to Mott’s T-1/4 law, the density of localized states N(EF) at Fermi level is estimated, which is found to increase with doping content increasing.
    • 基金项目: 中国科学院新型薄膜太阳电池重点实验室开放研究基金(批准号:KF201101)、安徽省高等学校省级自然科学重点研究项目(批准号:KJ2011A053)、安徽省高等学校省级自然科学研究项目(批准号:KJ2012Z034)和国家自然科学基金(批准号:51202005,11204005,41075027)资助的课题.
    • Funds: Project supported by the Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences (Grant No. KF201101), the Key Foundation of Natural Science of Higher Education Institutions of Anhui Province, China (Grant No. KJ2011A053), the Provincial Science Foundation of Higher Education Institutions of Anhui, China (Grant No. KJ2012Z034), and the National Natural Science Foundation of China (Grant Nos. 51202005, 11204005, 41075027).
    [1]

    Liu Y, Qin X Y, Wang Y F, Xin H X, Zhang J, Li H J 2007 J. Appl. Phys. 101 083709

    [2]

    Androulakis J, Migiakis P, Giapintzakis J 2004 Appl. Phys. Lett. 84 1099

    [3]

    Berggold K, Kriener M, Zobel C, Reichl A, Reuther M, Muller R, Freimth A, Lotenz T 2005 Phys. Rev. B 72 155

    [4]

    Moon J W, Seo W S, Okabe H, Okawa T, Oumotok K 2000 J. Matter Chem. 10 2007

    [5]

    Wang C L, Zhang J L, Zhao M L, Liu J, Su W B, Yin N, Mei L M 2009 Chin. Phys. Lett. 26 107301

    [6]

    Li P C, Yang H S, Li Z Q, Chai Y S, Cao L Z 2002 Chin. Phys. B 11 282

    [7]

    Shang J, Zhang H, Li Y, Cao M G, Zhang P X 2010 Chin. Phys. B 19 107203

    [8]

    Rossignol C, Ralph J M, Bae J M, Vaughey J T 2004 Solid State Ionics 175 59

    [9]

    Salker A V, Choi N J, Kwak J H, Joo B S, Lee D D 2005 Sensors Actuators B 106 461

    [10]

    Mehta A, Berliner R, Smith R W 1997 J. Solid State Chem. 130 192

    [11]

    Liu Y, Qin X Y 2006 J. Phys. Chem. Solids 67 1893

    [12]

    Androulakis J, Migiakis P, Giapintzakis J 2004 Appl. Phys. Lett. 84 1099

    [13]

    Thornton G, Morrison F C, Partington S, Tofield B C, Williams D E 1988 J. Phys. C: Solid State Phys. 21 2871

    [14]

    Se\v{n}arís-Rodríguez M A, Goodenough J B 1995 J. Solid State Chem. 118 323

    [15]

    Chang H, Chen C L, Garrett T, Chen X H, Xiang X D, Chu C W, Zhang Q Y, Dong C 2002 Appl. Phys. Lett. 80 4333

    [16]

    Demazeau G, Pouchard M, Hagenmuller P 1974 J. Solid State Chem. 9 202

    [17]

    Michel C R, Gago A S, Guzman-Colin H, Lopez-Mena E R, Lardizabal D, Buassi-Monroy O S 2004 Mater. Res. Bull. 39 2295

    [18]

    Goldsmit V M, Geochemische Vertailungsgesetze der E, Skrifter N V A 1926 Oslo I. Mat. Naturr. 2 7

    [19]

    Kn\’{I}\v{z}ek K, Jirák Z, Hejtmázek J, Veverka M, Mary\v{s}ko M, Maris G, Palstra T T M 2005 Eur. Phys. J. B 47 213

    [20]

    Moon J W, Masuda Y, Seo W S, Koumoto K 2001 Mater. Lett. 48 225

    [21]

    Kushida K, Kuriyama K 2001 Proceedings of the 25th International Conference on Physics of Semiconductors (Berlin: Spinger) p168

    [22]

    Okutan M, Bakan H I, Korkmaz K, Yakuphanoglu F 2005 Physica B 355 176

  • [1]

    Liu Y, Qin X Y, Wang Y F, Xin H X, Zhang J, Li H J 2007 J. Appl. Phys. 101 083709

    [2]

    Androulakis J, Migiakis P, Giapintzakis J 2004 Appl. Phys. Lett. 84 1099

    [3]

    Berggold K, Kriener M, Zobel C, Reichl A, Reuther M, Muller R, Freimth A, Lotenz T 2005 Phys. Rev. B 72 155

    [4]

    Moon J W, Seo W S, Okabe H, Okawa T, Oumotok K 2000 J. Matter Chem. 10 2007

    [5]

    Wang C L, Zhang J L, Zhao M L, Liu J, Su W B, Yin N, Mei L M 2009 Chin. Phys. Lett. 26 107301

    [6]

    Li P C, Yang H S, Li Z Q, Chai Y S, Cao L Z 2002 Chin. Phys. B 11 282

    [7]

    Shang J, Zhang H, Li Y, Cao M G, Zhang P X 2010 Chin. Phys. B 19 107203

    [8]

    Rossignol C, Ralph J M, Bae J M, Vaughey J T 2004 Solid State Ionics 175 59

    [9]

    Salker A V, Choi N J, Kwak J H, Joo B S, Lee D D 2005 Sensors Actuators B 106 461

    [10]

    Mehta A, Berliner R, Smith R W 1997 J. Solid State Chem. 130 192

    [11]

    Liu Y, Qin X Y 2006 J. Phys. Chem. Solids 67 1893

    [12]

    Androulakis J, Migiakis P, Giapintzakis J 2004 Appl. Phys. Lett. 84 1099

    [13]

    Thornton G, Morrison F C, Partington S, Tofield B C, Williams D E 1988 J. Phys. C: Solid State Phys. 21 2871

    [14]

    Se\v{n}arís-Rodríguez M A, Goodenough J B 1995 J. Solid State Chem. 118 323

    [15]

    Chang H, Chen C L, Garrett T, Chen X H, Xiang X D, Chu C W, Zhang Q Y, Dong C 2002 Appl. Phys. Lett. 80 4333

    [16]

    Demazeau G, Pouchard M, Hagenmuller P 1974 J. Solid State Chem. 9 202

    [17]

    Michel C R, Gago A S, Guzman-Colin H, Lopez-Mena E R, Lardizabal D, Buassi-Monroy O S 2004 Mater. Res. Bull. 39 2295

    [18]

    Goldsmit V M, Geochemische Vertailungsgesetze der E, Skrifter N V A 1926 Oslo I. Mat. Naturr. 2 7

    [19]

    Kn\’{I}\v{z}ek K, Jirák Z, Hejtmázek J, Veverka M, Mary\v{s}ko M, Maris G, Palstra T T M 2005 Eur. Phys. J. B 47 213

    [20]

    Moon J W, Masuda Y, Seo W S, Koumoto K 2001 Mater. Lett. 48 225

    [21]

    Kushida K, Kuriyama K 2001 Proceedings of the 25th International Conference on Physics of Semiconductors (Berlin: Spinger) p168

    [22]

    Okutan M, Bakan H I, Korkmaz K, Yakuphanoglu F 2005 Physica B 355 176

  • [1] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能. 物理学报, 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [2] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [3] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能. 物理学报, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [4] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究. 物理学报, 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [5] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [6] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [7] 庄晓波, 夏海平. 用Z-扫描技术研究卟啉铜偶合TiO2/SiO2有机-无机材料的非线性吸收特性. 物理学报, 2012, 61(18): 184213. doi: 10.7498/aps.61.184213
    [8] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征. 物理学报, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [9] 王德义, 高书霞, 李刚, 赵鸣. 溶胶-凝胶法制备Li-N双掺p型ZnO薄膜的结构、光学和电学性能. 物理学报, 2010, 59(5): 3473-3480. doi: 10.7498/aps.59.3473
    [10] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [11] 王晓栋, 沈军, 王生钊, 张志华. 椭偏光谱法研究溶胶-凝胶TiO2薄膜的光学常数. 物理学报, 2009, 58(11): 8027-8032. doi: 10.7498/aps.58.8027
    [12] 梁丽萍, 张 磊, 盛永刚, 徐 耀, 吴 东, 孙予罕, 蒋晓东, 魏晓峰. 溶胶-凝胶ZrO2-TiO2高折射率光学膜层的抗激光损伤性能研究. 物理学报, 2007, 56(6): 3596-3601. doi: 10.7498/aps.56.3596
    [13] 梁丽萍, 徐 耀, 张 磊, 吴 东, 孙予罕, 李志宏, 吴忠华. 溶胶-凝胶方法制备ZrO2及聚合物掺杂ZrO2单层光学增反射膜. 物理学报, 2006, 55(8): 4371-4382. doi: 10.7498/aps.55.4371
    [14] 刘玮书, 张波萍, 李敬锋, 刘 静. 机械合金化合成CoSb3过程中的固相反应机理的热力学解释. 物理学报, 2006, 55(1): 465-471. doi: 10.7498/aps.55.465
    [15] 梁丽萍, 张 磊, 徐 耀, 章 斌, 吴 东, 孙予罕, 蒋晓东, 魏晓峰, 李志宏, 吴忠华. PVP掺杂-ZrO2溶胶-凝胶工艺制备多层激光高反射膜的研究. 物理学报, 2006, 55(11): 6175-6184. doi: 10.7498/aps.55.6175
    [16] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
    [17] 赵明磊, 王春雷, 王矜奉, 陈洪存, 钟维烈. 溶胶-凝胶法制备的高压电常数(Bi0.5Na0.5)1-xBaxTiO3系无铅压电陶瓷. 物理学报, 2004, 53(7): 2357-2362. doi: 10.7498/aps.53.2357
    [18] 何志巍, 甄聪棉, 兰 伟, 王印月. 溶胶-凝胶法制备纳米多孔SiO2薄膜. 物理学报, 2003, 52(12): 3130-3134. doi: 10.7498/aps.52.3130
    [19] 赵明磊, 王春雷, 钟维烈, 王矜奉, 陈洪存. 溶胶-凝胶法制备Bi0.5Na0.5TiO3陶瓷及其电学特性. 物理学报, 2003, 52(1): 229-232. doi: 10.7498/aps.52.229
    [20] 陶卫东, 夏海平, 白贵儒, 董建峰, 聂秋华. 固体手性材料的研制及其特性测试. 物理学报, 2002, 51(3): 685-689. doi: 10.7498/aps.51.685
计量
  • 文章访问数:  3951
  • PDF下载量:  567
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-22
  • 修回日期:  2012-09-27
  • 刊出日期:  2013-02-05

Sr掺杂钙钛矿型氧化物Y1-xSrxCoO3的溶胶-凝胶制备及电阻率温度关系研究

  • 1. 安徽工业大学数理学院, 马鞍山 243032
    基金项目: 中国科学院新型薄膜太阳电池重点实验室开放研究基金(批准号:KF201101)、安徽省高等学校省级自然科学重点研究项目(批准号:KJ2011A053)、安徽省高等学校省级自然科学研究项目(批准号:KJ2012Z034)和国家自然科学基金(批准号:51202005,11204005,41075027)资助的课题.

摘要: 采用溶胶-凝胶方法成功制备了Sr的替代化合物Y1-xSrxCoO3 (x=0, 0.01, 0.05, 0.10, 0.15, 0.20), 系统地研究了20–720 K温度范围内Y1-xSrxCoO3的电阻率温度关系. 研究表明, 随着Sr的替代含量的增加, Y1-xSrxCoO3的电阻率迅速地降低, 这主要是由于载流子浓度的增加引起. 样品x=0和0.01在低于330和260 K的温度范围内, 电阻率与温度之间满足指数关系lnρ∝1/T, 获得导电激活能分别为0.2950和0.1461 eV. 然而, 实验显示lnρ∝1/T关系仅成立于重掺杂样品的高温区; 在低温区莫特定律lnρ∝T-1/4成立, 且表明重掺杂引入势垒, 导致大量局域态的形成. 根据莫特T-1/4定律拟合实验数据, 评估了局域态密度N(EF), 它随着掺杂量的增加而增加.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回