搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究

王陶 李俊杰 王锦程

引用本文:
Citation:

界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究

王陶, 李俊杰, 王锦程

Phase field modeling of the influence of interfacial wettability and solid volume fraction on the kinetics of coarsening

Wang Tao, Li Jun-Jie, Wang Jin-Cheng
PDF
导出引用
  • 利用多相场模型模拟了液-固两相体系中固相颗粒的粗化过程, 分析了界面润湿性及固相体积分数对粗化指数、粗化速率及颗粒尺寸分布的影响.结果表明, 不同固相体积分数下粗化指数基本不变, 但粗化速率常数及尺寸分布与固相体积分数及界面润湿性密切相关.在完全润湿条件下, 随着固相体积分数的增加, 粗化速率常数逐渐增大; 而非完全润湿条件下, 随着固相体积分数的增加, 粗化速率常数增大速度变缓, 且当润湿性较低、 固相分数较大时, 粗化速率常数还将随体积分数的增加而下降. 此外, 模拟结果表明各种润湿条件下颗粒的尺寸分布均随着固相分数增加而变宽, 分布峰值降低, 但非完全润湿条件下峰值下降变缓.模拟结果为理解不同实验观测结果之间的分歧提供了依据.
    Coarsening of solid particles in a solid-liquid two-phase system with high solid volume fraction is studied using the multiphase-field model. The influences of interfacial wettability and solid volume fraction on growth exponent, coarsening rate, and particle size distribution (PSD) are analyzed. It is found that the growth exponent is independent of the volume fraction, while the coarsening rate constant and the PSD are closely related to the interfacial wettability and the solid volume fraction. Under the completely wetting condition the coarsening rate constant increases with volume fraction increasing, but this variation is insignificant under the incompletely wetting condition. Moreover, when the wettability is low and volume fraction is high, the coarsening rate may also decrease with volume fraction increasing. The simulation results also show that with the increase of volume fraction, the peak frequency decreases and the PSD becomes broader, but the fall of the peak frequency under the incompletely wetting condition is slower than under the completely wetting condition. The simulation results provide an insight into the discrepancy between different experimental observations.
    • 基金项目: 国家自然科学基金(批准号: 51101124, 51071128)、国家重点基础研究发展计划(批准号: 2011CB610401)、教育部博士点基金(批准号: 20116102120018) 和凝固技术国家重点实验室基金(批准号: 67-QP-2011)资助的课题.
    • Funds: Supported by National Natural Science Foundation of China (Grants Nos. 51101124, 51071128), National Basic Research Program of China (Grant No. 2011CB610401), the Doctoral Program of Higher Education, China (Grant No. 20116102120018), Free Research Fund of State Key Laboratory of Solidification Processing, China (Grant No. 67-QP-2011).
    [1]

    Lifshitz I M, Slyozov V V 1961 J. Phys. Chem. Solids 19 35

    [2]

    Wagner C 1961 Z. Elektrochem. 65 581

    [3]

    Ardell A J 1972 Acta Metall. 20 61

    [4]

    Brailsford A D, Wynblatt P 1979 Acta Metall. 27 489

    [5]

    Voorhees P W, Glicksman M E 1984 Acta Metall. 32 2001

    [6]

    Mardar M 1987 Phys. Rev. A 36 858

    [7]

    Marsh S P, Glicksman M E 1996 Acta Mater. 44 3761

    [8]

    Poirier D R, Ganesan S, Andrews M, Ocansey P 1991 Mater. Sci. Eng. A 148 289

    [9]

    Terzi S, Salvo L, Suery M, Dahle A K, Boller E 2010 Acta Mater. 58 20

    [10]

    Kailasam S K, Glicksman M E, Mani S S, Fradkov V E 1999 Metall. Mater. Trans. A 30 1541

    [11]

    Hardy S C, Voorhees P W 1988 Metall. Mater. Trans. A 19 2713

    [12]

    Bender W, Ratke L 1998 Acta Mater. 46 1125

    [13]

    Manson-Whitton E D, Stone I C, Jone J R, Grant P S, Cantor B 2002 Acta Mater. 50 2517

    [14]

    Yang S C, Higgins G T, Nash P 1992 Mater. Sci. Technol. 8 10

    [15]

    Underhill R P, Grant P S, Cantor B 1993 Mater. Des. 14 45

    [16]

    Yu Y M, Yang G C, Zhao D W, Lü Y L 2001 Acta Phys. Sin. 50 2423 (in Chinese) [于艳梅, 杨根仓, 赵达文, 吕衣礼 2001 物理学报 50 2423]

    [17]

    Zhu Y C, Wang J C, Yang G C, Yang Y J 2007 Acta Phys. Sin. 56 5542 (in Chinese) [朱耀产, 王锦程, 杨根仓, 杨玉娟2007 物理学报 56 5542]

    [18]

    Li J J, Wang J C, Xu Q, Yang G C 2007 Acta Phys. Sin. 56 1514 (in Chinese) [李俊杰, 王锦程, 许泉, 杨根仓 2007 物理学报 56 1514]

    [19]

    Warren J A, Murray B T 1996 Mode. Simul. Mater. Sci. Eng. 4 215

    [20]

    Fan D, Chen S P, Chen L Q, Voorhees P W 2002 Acta Mater. 50 1895

    [21]

    Wang K G, Ding X, Chang K, Chen L Q 2010 J. Appl. Phys. 107 061801

    [22]

    Kim S G 2007 Acta Mater. 55 6513

  • [1]

    Lifshitz I M, Slyozov V V 1961 J. Phys. Chem. Solids 19 35

    [2]

    Wagner C 1961 Z. Elektrochem. 65 581

    [3]

    Ardell A J 1972 Acta Metall. 20 61

    [4]

    Brailsford A D, Wynblatt P 1979 Acta Metall. 27 489

    [5]

    Voorhees P W, Glicksman M E 1984 Acta Metall. 32 2001

    [6]

    Mardar M 1987 Phys. Rev. A 36 858

    [7]

    Marsh S P, Glicksman M E 1996 Acta Mater. 44 3761

    [8]

    Poirier D R, Ganesan S, Andrews M, Ocansey P 1991 Mater. Sci. Eng. A 148 289

    [9]

    Terzi S, Salvo L, Suery M, Dahle A K, Boller E 2010 Acta Mater. 58 20

    [10]

    Kailasam S K, Glicksman M E, Mani S S, Fradkov V E 1999 Metall. Mater. Trans. A 30 1541

    [11]

    Hardy S C, Voorhees P W 1988 Metall. Mater. Trans. A 19 2713

    [12]

    Bender W, Ratke L 1998 Acta Mater. 46 1125

    [13]

    Manson-Whitton E D, Stone I C, Jone J R, Grant P S, Cantor B 2002 Acta Mater. 50 2517

    [14]

    Yang S C, Higgins G T, Nash P 1992 Mater. Sci. Technol. 8 10

    [15]

    Underhill R P, Grant P S, Cantor B 1993 Mater. Des. 14 45

    [16]

    Yu Y M, Yang G C, Zhao D W, Lü Y L 2001 Acta Phys. Sin. 50 2423 (in Chinese) [于艳梅, 杨根仓, 赵达文, 吕衣礼 2001 物理学报 50 2423]

    [17]

    Zhu Y C, Wang J C, Yang G C, Yang Y J 2007 Acta Phys. Sin. 56 5542 (in Chinese) [朱耀产, 王锦程, 杨根仓, 杨玉娟2007 物理学报 56 5542]

    [18]

    Li J J, Wang J C, Xu Q, Yang G C 2007 Acta Phys. Sin. 56 1514 (in Chinese) [李俊杰, 王锦程, 许泉, 杨根仓 2007 物理学报 56 1514]

    [19]

    Warren J A, Murray B T 1996 Mode. Simul. Mater. Sci. Eng. 4 215

    [20]

    Fan D, Chen S P, Chen L Q, Voorhees P W 2002 Acta Mater. 50 1895

    [21]

    Wang K G, Ding X, Chang K, Chen L Q 2010 J. Appl. Phys. 107 061801

    [22]

    Kim S G 2007 Acta Mater. 55 6513

  • [1] 郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华. 金属基复合材料原位反应相场模型. 物理学报, 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [2] 蒋新安, 赵宇宏, 杨文奎, 田晓林, 侯华. 相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理. 物理学报, 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [3] 杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静. Fe-Cr合金辐照空洞微结构演化的相场法模拟. 物理学报, 2021, 70(5): 054601. doi: 10.7498/aps.70.20201457
    [4] 郭震, 赵宇宏, 孙远洋, 赵宝军, 田晓林, 侯华. 相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制. 物理学报, 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [5] 罗海滨, 李俊杰, 马渊, 郭春文, 王锦程. 粗化过程中颗粒界面形状演化的三维多相场法研究. 物理学报, 2014, 63(2): 026401. doi: 10.7498/aps.63.026401
    [6] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究. 物理学报, 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [7] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [8] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 物理学报, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [9] 宗亚平, 王明涛, 郭巍. 再结晶和外力场下第二相析出的相场法模拟. 物理学报, 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [10] 陈云, 康秀红, 肖纳敏, 郑成武, 李殿中. 多晶材料晶粒生长粗化过程的相场方法模拟. 物理学报, 2009, 58(13): 124-S131. doi: 10.7498/aps.58.124
    [11] 冯 力, 王智平, 路 阳, 朱昌盛. 二元合金多晶粒的枝晶生长的等温相场模型. 物理学报, 2008, 57(2): 1084-1090. doi: 10.7498/aps.57.1084
    [12] 陈玉娟, 陈长乐. 相场法模拟对流速度对上游枝晶生长的影响. 物理学报, 2008, 57(7): 4585-4589. doi: 10.7498/aps.57.4585
    [13] 李俊杰, 王锦程, 许 泉, 杨根仓. 外来夹杂物颗粒对枝晶生长形态影响的相场法研究. 物理学报, 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [14] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [15] 张玉祥, 王锦程, 杨根仓, 周尧和. 相场法模拟弹性场对沉淀相变组织演化及相平衡成分的影响. 物理学报, 2006, 55(5): 2433-2438. doi: 10.7498/aps.55.2433
    [16] 白锁柱, 姚 斌, 郑大方, 邢国忠, 苏文辉. 新型BCN化合物的结构表征和相转变. 物理学报, 2006, 55(11): 5740-5744. doi: 10.7498/aps.55.5740
    [17] 李梅娥, 杨根仓, 周尧和. 二元合金高速定向凝固过程的相场法数值模拟. 物理学报, 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
    [18] 龙文元, 蔡启舟, 陈立亮, 魏伯康. 二元合金等温凝固过程的相场模型. 物理学报, 2005, 54(1): 256-262. doi: 10.7498/aps.54.256
    [19] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 物理学报, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [20] 赵晓鹏, 高秀敏, 高向阳, 郜丹军. 固液双相电流变系统流动过程的相转变特性. 物理学报, 2003, 52(2): 405-410. doi: 10.7498/aps.52.405
计量
  • 文章访问数:  3562
  • PDF下载量:  774
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-27
  • 修回日期:  2012-12-25
  • 刊出日期:  2013-05-05

界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究

  • 1. 西北工业大学, 凝固技术国家重点实验室, 西安 710072
    基金项目: 国家自然科学基金(批准号: 51101124, 51071128)、国家重点基础研究发展计划(批准号: 2011CB610401)、教育部博士点基金(批准号: 20116102120018) 和凝固技术国家重点实验室基金(批准号: 67-QP-2011)资助的课题.

摘要: 利用多相场模型模拟了液-固两相体系中固相颗粒的粗化过程, 分析了界面润湿性及固相体积分数对粗化指数、粗化速率及颗粒尺寸分布的影响.结果表明, 不同固相体积分数下粗化指数基本不变, 但粗化速率常数及尺寸分布与固相体积分数及界面润湿性密切相关.在完全润湿条件下, 随着固相体积分数的增加, 粗化速率常数逐渐增大; 而非完全润湿条件下, 随着固相体积分数的增加, 粗化速率常数增大速度变缓, 且当润湿性较低、 固相分数较大时, 粗化速率常数还将随体积分数的增加而下降. 此外, 模拟结果表明各种润湿条件下颗粒的尺寸分布均随着固相分数增加而变宽, 分布峰值降低, 但非完全润湿条件下峰值下降变缓.模拟结果为理解不同实验观测结果之间的分歧提供了依据.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回