搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Lorenz映射的混沌系统分支变换预报规律研究

黎爱兵 张立凤

引用本文:
Citation:

基于Lorenz映射的混沌系统分支变换预报规律研究

黎爱兵, 张立凤

Rules for predicting regime change in the Lorenz chaotic system based on the Lorenz map

Li Ai-Bing, Zhang Li-Feng
PDF
导出引用
  • 尽管Lorenz系统具有混沌和非周期性质, 但其分支变换是可预报的.本文以强迫Lorenz系统为数学模型, 基于Lorenz映射, 研究了混沌系统分支变换的预报规律, 将原有关于分支开始变换条件和新分支持续时间的两条一般规律扩展到了3条, 并首次分析了系统当前状态达到变换条件所需时间的预报规律, 从而为预报混沌系统非周期演变提供了另一途径.结果表明: 映射尖点位置为分支变换的临界值, 当变量z超过相应临界值时, 系统在当前分支的运动即将结束, 下一循环将跳跃到另一分支运动; 系统在同一分支循环的次数随极值zmax单调减小, zmax 越小, 达到变换条件需循环的次数越多; 系统在新分支持续的时间是先前分支最大极值zM 的单调增加函数, zM越大, 持续时间增加的幅度也越大.此外, 外强迫影响着混沌系统分支变换的预报规律, 其不但使正负分支的变换条件出现差异, 且与新分支持续时间的增加速率和达到变换条件所需时间的递减速率密切相关.
    Corresponding to two strange Lorenz attractors, in the Lorenz model there exist two opposite regimes which can be called as positive and negative regimes. Despite the trajectory of the Lorenz system changing between the two regimes back and forth with an unfixed period, the regime change is predictable. In this paper, with the help of the Lorenz map, three rules for predicting regime change are obtained. In particular, besides two generic predictable rules for the condition of regime transition and duration in new regime, a new rule about length for reaching transition condition, which has not been reported in previous work, is also very important. It provides another approach to forecasting the evolution of the nonlinear dynamical system. The results show that the position for highest point in cusps is the critical value for regime change. When the value of variable z is greater than the corresponding critical value, the current regime is about to end, and the Lorenz model will move to other regime in the next cycle. The length for reaching transition condition in the current regime decreases monotonically with local maximum value zmax, and the smaller zmax in current status implies the bigger length for reaching transition condition. The duration in new regime increases monotonically with the maximum value zM in the previous regime, and the bigger the value of zM, the larger the range for the duration increase is. In addition, the forcing is also associated with the prediction rules for regime change. It not only makes transition conditions for positive and negative regimes different, but also determines the speed of decrease in length for reaching transition condition and the range of increase for duration in new regime.
    • 基金项目: 国家自然科学基金(批准号: 40975031)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 40975031).
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Palmer T N 1993 Bull. Amer. Meteor. Soc. 74 49

    [3]

    Sikka D R, Gadgil S 1980 Mon. Wea. Rev. 108 1840

    [4]

    Yadav R S, Dwivedi S, Mittal A K 2005 J. Atmos. Sci. 62 2316

    [5]

    Christiansen B 2003 J. Clim. 16 3681

    [6]

    Palmer T N 1999 J. Clim. 12 575

    [7]

    He W P, Feng G L, Dong W J, Li J P 2006 Acta Phys. Sin. 55 969 (in Chinese) [何文平, 封国林, 董文杰, 李建平 2006 物理学报 55 969]

    [8]

    He W P, Feng G L, Gao X Q, Chou J F 2006 Acta Phys. Sin. 55 3175 (in Chinese) [何文平, 封国林, 高新全, 丑纪范 2006 物理学报 55 3175]

    [9]

    Ding R Q, Li J P 2007 Chin. J. Atmos. Sci. 31 571 (in Chinese) [丁瑞强, 李建平 2007 大气科学 31 571]

    [10]

    Ding R Q, Li J P 2008 Chin. J. Geophys. 51 1007 (in Chinese) [丁瑞强, 李建平 2008 地球物理学报 51 1007]

    [11]

    Ding R Q, Li J P 2011 Acta Meteor. Sin. 25 395

    [12]

    Evans E N, Bhatti J K, Pann L, Pena M, Yang S C, Kalnay E, Hansen J 2004 Bull. Amer. Meteor. Soc. 85 520

    [13]

    Mittal A K, Dwivedi S, Yadav R S 2007 Physica D 233 14

    [14]

    Dwivedi S, Mittal A K 2012 Pure Appl. Geophys. 169 755

    [15]

    Palmer T N 1994 Ind. Natl. Sci. Acad. 60 57

    [16]

    Mittal A K, Dwivedi S, Pandey A C 2005 Nonlin. Prog. Geophys. 12 707

    [17]

    Dwivedi S, Mittal A K, Pandey A C 2007 Atmo.-Ocean 45 71

    [18]

    Li A B, Zhang L F, Xiang J 2012 Acta Phys. Sin. 61 119202 (in Chinese) [黎爱兵, 张立凤, 项杰 2012 物理学报 61 119202]

    [19]

    Mehta M, Mittal A K, Diwivedi S 2003 Int. J. Bifurcation Chaos 13 3029

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Palmer T N 1993 Bull. Amer. Meteor. Soc. 74 49

    [3]

    Sikka D R, Gadgil S 1980 Mon. Wea. Rev. 108 1840

    [4]

    Yadav R S, Dwivedi S, Mittal A K 2005 J. Atmos. Sci. 62 2316

    [5]

    Christiansen B 2003 J. Clim. 16 3681

    [6]

    Palmer T N 1999 J. Clim. 12 575

    [7]

    He W P, Feng G L, Dong W J, Li J P 2006 Acta Phys. Sin. 55 969 (in Chinese) [何文平, 封国林, 董文杰, 李建平 2006 物理学报 55 969]

    [8]

    He W P, Feng G L, Gao X Q, Chou J F 2006 Acta Phys. Sin. 55 3175 (in Chinese) [何文平, 封国林, 高新全, 丑纪范 2006 物理学报 55 3175]

    [9]

    Ding R Q, Li J P 2007 Chin. J. Atmos. Sci. 31 571 (in Chinese) [丁瑞强, 李建平 2007 大气科学 31 571]

    [10]

    Ding R Q, Li J P 2008 Chin. J. Geophys. 51 1007 (in Chinese) [丁瑞强, 李建平 2008 地球物理学报 51 1007]

    [11]

    Ding R Q, Li J P 2011 Acta Meteor. Sin. 25 395

    [12]

    Evans E N, Bhatti J K, Pann L, Pena M, Yang S C, Kalnay E, Hansen J 2004 Bull. Amer. Meteor. Soc. 85 520

    [13]

    Mittal A K, Dwivedi S, Yadav R S 2007 Physica D 233 14

    [14]

    Dwivedi S, Mittal A K 2012 Pure Appl. Geophys. 169 755

    [15]

    Palmer T N 1994 Ind. Natl. Sci. Acad. 60 57

    [16]

    Mittal A K, Dwivedi S, Pandey A C 2005 Nonlin. Prog. Geophys. 12 707

    [17]

    Dwivedi S, Mittal A K, Pandey A C 2007 Atmo.-Ocean 45 71

    [18]

    Li A B, Zhang L F, Xiang J 2012 Acta Phys. Sin. 61 119202 (in Chinese) [黎爱兵, 张立凤, 项杰 2012 物理学报 61 119202]

    [19]

    Mehta M, Mittal A K, Diwivedi S 2003 Int. J. Bifurcation Chaos 13 3029

  • [1] 梁丁, 顾斌, 丁瑞强, 李建平, 钟权加. 基于Lorenz模型的集合预报与单一预报的比较研究. 物理学报, 2018, 67(7): 070501. doi: 10.7498/aps.67.20172144
    [2] 潘昕浓, 王革丽, 杨培才. 利用慢特征分析法提取层次结构系统中的外强迫. 物理学报, 2017, 66(8): 080501. doi: 10.7498/aps.66.080501
    [3] 李保生, 丁瑞强, 李建平, 钟权加. 强迫Lorenz系统的可预报性研究. 物理学报, 2017, 66(6): 060503. doi: 10.7498/aps.66.060503
    [4] 刘啸天, 周国华, 李振华, 陈兴. 基于双缘调制的数字电压型控制Buck变换器离散迭代映射建模与动力学分析. 物理学报, 2015, 64(22): 228401. doi: 10.7498/aps.64.228401
    [5] 达朝究, 穆帅, 马德山, 于海鹏, 侯威, 龚志强. 基于Lorenz系统的数值天气转折期预报理论探索. 物理学报, 2014, 63(2): 029201. doi: 10.7498/aps.63.029201
    [6] 胡泊, 乔少博, 封国林. 20世纪90年代末东亚夏季降水年代际变化及其成因初探. 物理学报, 2014, 63(20): 209204. doi: 10.7498/aps.63.209204
    [7] 沙金, 许建平. 脉冲序列控制开关变换器的脉冲组合规律及其多周期态研究. 物理学报, 2013, 62(21): 218402. doi: 10.7498/aps.62.218402
    [8] 黎爱兵, 张立凤, 项杰. 外强迫对Lorenz系统初值可预报性的影响. 物理学报, 2012, 61(11): 119202. doi: 10.7498/aps.61.119202
    [9] 杨汝, 张波, 赵寿柏, 劳裕锦. 基于符号时间序列方法的开关变换器离散映射算法复杂度分析. 物理学报, 2010, 59(6): 3756-3762. doi: 10.7498/aps.59.3756
    [10] 韩丽丽, 戴振文, 王云鹏, 蒋占魁. 钯原子谱线的分支比测量. 物理学报, 2008, 57(6): 3425-3428. doi: 10.7498/aps.57.3425
    [11] 丁瑞强, 李建平. 混沌系统可预报期限随初始误差变化规律研究. 物理学报, 2008, 57(12): 7494-7499. doi: 10.7498/aps.57.7494
    [12] 莫嘉琪, 林万涛. 一类Lorenz系统的同伦映射解法. 物理学报, 2008, 57(11): 6694-6698. doi: 10.7498/aps.57.6694
    [13] 王兴元, 王明军. 超混沌Lorenz系统. 物理学报, 2007, 56(9): 5136-5141. doi: 10.7498/aps.56.5136
    [14] 何文平, 封国林, 董文杰, 李建平. Lorenz系统的可预报性. 物理学报, 2006, 55(2): 969-977. doi: 10.7498/aps.55.969
    [15] 侯 威, 封国林, 董文杰. 基于复杂度分析logistic映射和Lorenz模型的研究. 物理学报, 2005, 54(8): 3940-3946. doi: 10.7498/aps.54.3940
    [16] 汪 萍, 戴新刚. 外强迫作用下正压大气非线性特征数值模拟. 物理学报, 2005, 54(10): 4961-4970. doi: 10.7498/aps.54.4961
    [17] 封国林, 董文杰. 集合预报物理基础的探讨. 物理学报, 2003, 52(9): 2347-2353. doi: 10.7498/aps.52.2347
    [18] 余建祖, 苏 楠, T.L.Vincent. 混沌Lorenz系统的控制研究. 物理学报, 1998, 47(3): 397-402. doi: 10.7498/aps.47.397
    [19] 陈激. 关于Y1*对产生的分支比. 物理学报, 1965, 21(11): 1919-1920. doi: 10.7498/aps.21.1919
    [20] 朱保如. 不稳定粒子η的衰变分支比R((η→ππγ)/(η→3π)). 物理学报, 1965, 21(1): 92-102. doi: 10.7498/aps.21.92
计量
  • 文章访问数:  3240
  • PDF下载量:  556
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-22
  • 修回日期:  2013-02-25
  • 刊出日期:  2013-06-05

基于Lorenz映射的混沌系统分支变换预报规律研究

  • 1. 中国人民解放军理工大学气象海洋学院, 南京 211101
    基金项目: 国家自然科学基金(批准号: 40975031)资助的课题.

摘要: 尽管Lorenz系统具有混沌和非周期性质, 但其分支变换是可预报的.本文以强迫Lorenz系统为数学模型, 基于Lorenz映射, 研究了混沌系统分支变换的预报规律, 将原有关于分支开始变换条件和新分支持续时间的两条一般规律扩展到了3条, 并首次分析了系统当前状态达到变换条件所需时间的预报规律, 从而为预报混沌系统非周期演变提供了另一途径.结果表明: 映射尖点位置为分支变换的临界值, 当变量z超过相应临界值时, 系统在当前分支的运动即将结束, 下一循环将跳跃到另一分支运动; 系统在同一分支循环的次数随极值zmax单调减小, zmax 越小, 达到变换条件需循环的次数越多; 系统在新分支持续的时间是先前分支最大极值zM 的单调增加函数, zM越大, 持续时间增加的幅度也越大.此外, 外强迫影响着混沌系统分支变换的预报规律, 其不但使正负分支的变换条件出现差异, 且与新分支持续时间的增加速率和达到变换条件所需时间的递减速率密切相关.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回