搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于标记配对相干态光源的诱骗态量子密钥分配性能分析

周媛媛 张合庆 周学军 田培根

引用本文:
Citation:

基于标记配对相干态光源的诱骗态量子密钥分配性能分析

周媛媛, 张合庆, 周学军, 田培根

Performance analysis of decoy-state quantum key distribution with a heralded pair coherent state photon source

Zhou Yuan-Yuan, Zhang He-Qing, Zhou Xue-Jun, Tian Pei-Gen
PDF
导出引用
  • 从有效性、稳定性和可行性三个方面, 对基于标记配对相干态光源的诱骗态量子密钥分配的性能进行了全面分析. 采用四组实验数据对基于标记配对相干态光源的三强度诱骗态方案的密钥生成效率、量子比特误码率和最优信号态强度与安全传输距离之间的关系进行了仿真和分析; 考虑到光源涨落, 对方案的稳定性进行了讨论和仿真; 并对基于标记配对相干态光源设计简单易实现方案的可行性进行了分析. 结论表明: 基于标记配对相干态光源的诱骗态方案性能在安全传输距离和密钥生成效率两方面都优于现有基于弱相干态光源和预报单光子源的诱骗态方案; 在光源强度涨落相同条件下, 标记配对相干态光源的稳定性逊于预报单光子源, 而优于相干态光源. 但是标记配对相干态光源在有效性上的优势可弥补其在稳定性上的不足; 且标记配对相干态光源的双模特性为设计简单易实现的被动诱骗态方案提供了条件.
    A comprehensive analysis is made on the performance of decoy-state quantum key distribution with a heralded pair coherent state photon source from the effectiveness, stability and feasibility. The key generation rate, quantum bit error rate, and optimal signal intensity each as a function of secure transmission distance are simulated and analyzed by the three-intensity decoy-state method based on a heralded pair coherent state photon source with four groups of experimental data. Considering the intensity fluctuation, the stability of this method is simulated and discussed. Furthermore, the feasibility of the simple and easy method that is proposed with a heralded pair coherent state photon source is analyzed. The simulation results show that the key generation rate and secure transmission distance obtained from the decoy-state method with a heralded pair coherent state photon source are better than those obtained from the methods with a weak coherent state source and heralded single photon source. With the same intensity fluctuation, the heralded pair coherent state photon source is less stable than the heralded single photon source, but more robust than the weak coherent state source. However, the advantage in the effectiveness of the heralded single photon source can give rise to the shortage of the stability. Moreover, the two same modes of the heralded single photon source provide the feasibility to design a simple and easy passive decoy-state method.
    • 基金项目: 国家高技术研究发展计划(批准号: 2011AA7014061)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA7014061).
    [1]

    Bennett C H, Brassard G 1984 Processing of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175

    [2]

    Wang X B 2005 Phys. Rev. Lett. 94 230503

    [3]

    Hwang W Y 2003 Phys. Rev. Lett. 91 057901

    [4]

    Lo H K, Ma X F, Chen K 2005 Phys. Rev. Lett. 94 230504

    [5]

    Ma X F, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326

    [6]

    Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312

    [7]

    Yin Z Q, Han Z F, Sun F W, Guo G C 2007 Phys. Rev. A 76 014304

    [8]

    Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304

    [9]

    Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪 2008 物理学报 57 678]

    [10]

    Quan D X, Pei C X, Zhu C H, Liu D 2008 Acta Phys. Sin. 57 5600 (in Chinese) [权东晓, 裴昌幸, 朱畅华, 刘丹 2008 物理学报 57 5600]

    [11]

    Mi J L, Wang F Q, Lin Q Q, Liang R S 2008 Chin. Phys. B 17 1178

    [12]

    Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍 2010 物理学报 59 287]

    [13]

    Zhou Y Y, Zhou X J, Tian P G, Wang Y J 2013 Chin. Phys. B 22 010305

    [14]

    Zhao Y, Qi B, Ma X F, Lo H K, Qian L 2006 Phys. Rev. Lett. 96 070502

    [15]

    Tobias S M, Henning W, Martin F, Rupert U, Felix T, Thomas S, Josep P, Zoran S, Christian K, John G R, Anton Z, Harald W 2007 Phys. Rev. Lett. 98 010504

    [16]

    Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L, Guo G C 2008 Chin. Phys. Lett. 25 3547

    [17]

    Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A 2008 Phys. Rev. Lett. 100 090501

    [18]

    Wang X B 2007 Phys. Rev. A 75 052301

    [19]

    Wang X B, Peng C Z, Zhang J, Yang L, Pan J W 2008 Phys. Rev. A 77 042311

    [20]

    Wang S, Zhang S L, Li H W, Yin Z Q, Zhao Y B, Chen W, Han Z F, Guo G C 2009 Phys. Rev. A 79 062309

    [21]

    Hu J Z, Wang X B 2010 Phys. Rev. A 82 012331

    [22]

    Mauerer W, Silberhorn C 2007 Phys. Rev. A 75 050305

    [23]

    Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503

    [24]

    Curty M, Moroder T, Ma X F, Ltkenhaus N 2009 Opt. Lett. 34 3238

    [25]

    Curty M, Ma X F, Qi B, Moroder T 2010 Phys. Rev. A 81 022310

    [26]

    Zhou Y Y, Zhou X J 2011 Acta Phys. Sin. 60 100301 (in Chinese) [周媛媛, 周学军 2011 物理学报 60 100301]

    [27]

    Zhang S L, Zou X B, Li C F, Jin C H, Guo G C 2009 Chin. Sci. Bull. 54 1863

    [28]

    Gottesman D, Lo H K, Ltkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325

    [29]

    Agarwal G S 1986 Phys. Rev. Lett. 57 827

    [30]

    Ltkenhaus N 2000 Phys. Rev. A 61 052304

    [31]

    Ma X F 2006 Phys. Rev. A 74 052325

    [32]

    Townsend P D 1998 IEEE Photonics Technol. Lett. 10 1048

    [33]

    Ribordy G, Gautier J D, Gisin N, Guinnard O, Zbinden H 1998 Electron. Lett. 34 2116

    [34]

    Bourennane M, Gibson F, Karlsson A, Hening A, Jonsson P, Tsegaye T, Ljunggren D, Sundberg E1999 Opt. Express 4 383

    [35]

    Gobby C, Yuan Z L, Shields A J 2004 Appl. Phys. Lett. 84 3762

    [36]

    Zhou C, Bao W S, Fu X Q 2011 Sci. China 41 1136

    [37]

    Zhang H Q, Zhou Y Y, Zhou X J, Tian P G 2013 Optoelectron. Lett. 9 389

  • [1]

    Bennett C H, Brassard G 1984 Processing of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175

    [2]

    Wang X B 2005 Phys. Rev. Lett. 94 230503

    [3]

    Hwang W Y 2003 Phys. Rev. Lett. 91 057901

    [4]

    Lo H K, Ma X F, Chen K 2005 Phys. Rev. Lett. 94 230504

    [5]

    Ma X F, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326

    [6]

    Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312

    [7]

    Yin Z Q, Han Z F, Sun F W, Guo G C 2007 Phys. Rev. A 76 014304

    [8]

    Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304

    [9]

    Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪 2008 物理学报 57 678]

    [10]

    Quan D X, Pei C X, Zhu C H, Liu D 2008 Acta Phys. Sin. 57 5600 (in Chinese) [权东晓, 裴昌幸, 朱畅华, 刘丹 2008 物理学报 57 5600]

    [11]

    Mi J L, Wang F Q, Lin Q Q, Liang R S 2008 Chin. Phys. B 17 1178

    [12]

    Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍 2010 物理学报 59 287]

    [13]

    Zhou Y Y, Zhou X J, Tian P G, Wang Y J 2013 Chin. Phys. B 22 010305

    [14]

    Zhao Y, Qi B, Ma X F, Lo H K, Qian L 2006 Phys. Rev. Lett. 96 070502

    [15]

    Tobias S M, Henning W, Martin F, Rupert U, Felix T, Thomas S, Josep P, Zoran S, Christian K, John G R, Anton Z, Harald W 2007 Phys. Rev. Lett. 98 010504

    [16]

    Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L, Guo G C 2008 Chin. Phys. Lett. 25 3547

    [17]

    Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A 2008 Phys. Rev. Lett. 100 090501

    [18]

    Wang X B 2007 Phys. Rev. A 75 052301

    [19]

    Wang X B, Peng C Z, Zhang J, Yang L, Pan J W 2008 Phys. Rev. A 77 042311

    [20]

    Wang S, Zhang S L, Li H W, Yin Z Q, Zhao Y B, Chen W, Han Z F, Guo G C 2009 Phys. Rev. A 79 062309

    [21]

    Hu J Z, Wang X B 2010 Phys. Rev. A 82 012331

    [22]

    Mauerer W, Silberhorn C 2007 Phys. Rev. A 75 050305

    [23]

    Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503

    [24]

    Curty M, Moroder T, Ma X F, Ltkenhaus N 2009 Opt. Lett. 34 3238

    [25]

    Curty M, Ma X F, Qi B, Moroder T 2010 Phys. Rev. A 81 022310

    [26]

    Zhou Y Y, Zhou X J 2011 Acta Phys. Sin. 60 100301 (in Chinese) [周媛媛, 周学军 2011 物理学报 60 100301]

    [27]

    Zhang S L, Zou X B, Li C F, Jin C H, Guo G C 2009 Chin. Sci. Bull. 54 1863

    [28]

    Gottesman D, Lo H K, Ltkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325

    [29]

    Agarwal G S 1986 Phys. Rev. Lett. 57 827

    [30]

    Ltkenhaus N 2000 Phys. Rev. A 61 052304

    [31]

    Ma X F 2006 Phys. Rev. A 74 052325

    [32]

    Townsend P D 1998 IEEE Photonics Technol. Lett. 10 1048

    [33]

    Ribordy G, Gautier J D, Gisin N, Guinnard O, Zbinden H 1998 Electron. Lett. 34 2116

    [34]

    Bourennane M, Gibson F, Karlsson A, Hening A, Jonsson P, Tsegaye T, Ljunggren D, Sundberg E1999 Opt. Express 4 383

    [35]

    Gobby C, Yuan Z L, Shields A J 2004 Appl. Phys. Lett. 84 3762

    [36]

    Zhou C, Bao W S, Fu X Q 2011 Sci. China 41 1136

    [37]

    Zhang H Q, Zhou Y Y, Zhou X J, Tian P G 2013 Optoelectron. Lett. 9 389

  • [1] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [2] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备. 物理学报, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [3] 安雪碧, 银振强, 韩正甫. 光学体系宏观-微观纠缠及其在量子密钥分配中的应用. 物理学报, 2015, 64(14): 140303. doi: 10.7498/aps.64.140303
    [4] 卢道明, 邱昌东. 弱相干场原子-腔-光纤系统中的量子失协. 物理学报, 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [5] 郭邦红, 杨理, 向憧, 关翀, 吴令安, 刘颂豪. 联合调制量子密钥分配系统. 物理学报, 2013, 62(13): 130303. doi: 10.7498/aps.62.130303
    [6] 赵峰. 单向量子密钥纠错协议的纠错性能仿真分析. 物理学报, 2013, 62(20): 200303. doi: 10.7498/aps.62.200303
    [7] 焦荣珍, 丁天, 王文集, 马海强. 基于不可信光源的量子密钥分配的统计特性研究. 物理学报, 2013, 62(18): 180302. doi: 10.7498/aps.62.180302
    [8] 卢道明. 三参数双模压缩粒子数态的量子特性. 物理学报, 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [9] 焦荣珍, 唐少杰, 张弨. 诱惑态量子密钥分配系统中统计涨落的研究. 物理学报, 2012, 61(5): 050302. doi: 10.7498/aps.61.050302
    [10] 焦荣珍, 张弨, 马海强. 基于实用光源的诱惑态量子密钥分配研究. 物理学报, 2011, 60(11): 110303. doi: 10.7498/aps.60.110303
    [11] 王涵, 闫连山, 潘炜, 罗斌, 郭振, 徐明峰. 基于两种光源的诱发态量子密钥分配性能分析. 物理学报, 2011, 60(3): 030304. doi: 10.7498/aps.60.030304
    [12] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配. 物理学报, 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [13] 王德义, 高书霞, 李刚, 赵鸣. 溶胶-凝胶法制备Li-N双掺p型ZnO薄膜的结构、光学和电学性能. 物理学报, 2010, 59(5): 3473-3480. doi: 10.7498/aps.59.3473
    [14] 张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲. 反Jaynes-Cummings模型下纠缠相干光场量子特性的研究. 物理学报, 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
    [15] 郭邦红, 路轶群, 王发强, 赵 峰, 胡 敏, 林一满, 廖常俊, 刘颂豪. 相位调制量子密钥分配系统中低频振动相移的实时跟踪补偿. 物理学报, 2007, 56(7): 3695-3702. doi: 10.7498/aps.56.3695
    [16] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [17] 杨宇光, 温巧燕, 朱甫臣. 一种新的利用不可扩展乘积基和严格纠缠基的量子密钥分配方案. 物理学报, 2005, 54(12): 5549-5553. doi: 10.7498/aps.54.5549
    [18] 杨宇光, 温巧燕, 朱甫臣. 一种网络多用户量子认证和密钥分配理论方案. 物理学报, 2005, 54(9): 3995-3999. doi: 10.7498/aps.54.3995
    [19] 杨宇光, 温巧燕, 朱甫臣. 基于纠缠交换的多方多级量子密钥分配协议. 物理学报, 2005, 54(12): 5544-5548. doi: 10.7498/aps.54.5544
    [20] 张权, 唐朝京, 张森强. B92量子密钥分配协议的变形及其无条件安全性证明. 物理学报, 2002, 51(7): 1439-1447. doi: 10.7498/aps.51.1439
计量
  • 文章访问数:  2786
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-30
  • 修回日期:  2013-06-27
  • 刊出日期:  2013-10-05

基于标记配对相干态光源的诱骗态量子密钥分配性能分析

  • 1. 海军工程大学电子工程学院, 武汉 430033;
  • 2. 北京航空航天大学电子信息工程学院, 北京 100191
    基金项目: 国家高技术研究发展计划(批准号: 2011AA7014061)资助的课题.

摘要: 从有效性、稳定性和可行性三个方面, 对基于标记配对相干态光源的诱骗态量子密钥分配的性能进行了全面分析. 采用四组实验数据对基于标记配对相干态光源的三强度诱骗态方案的密钥生成效率、量子比特误码率和最优信号态强度与安全传输距离之间的关系进行了仿真和分析; 考虑到光源涨落, 对方案的稳定性进行了讨论和仿真; 并对基于标记配对相干态光源设计简单易实现方案的可行性进行了分析. 结论表明: 基于标记配对相干态光源的诱骗态方案性能在安全传输距离和密钥生成效率两方面都优于现有基于弱相干态光源和预报单光子源的诱骗态方案; 在光源强度涨落相同条件下, 标记配对相干态光源的稳定性逊于预报单光子源, 而优于相干态光源. 但是标记配对相干态光源在有效性上的优势可弥补其在稳定性上的不足; 且标记配对相干态光源的双模特性为设计简单易实现的被动诱骗态方案提供了条件.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回