搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学气敏材料金红石相二氧化钛(110)面吸附CO分子的微观特性机理研究

朱洪强 冯庆

引用本文:
Citation:

光学气敏材料金红石相二氧化钛(110)面吸附CO分子的微观特性机理研究

朱洪强, 冯庆

Microscopic characteristics mechanism of optical gas sensing material rutile titanium dioxide (110) surface adsorption of CO molecules

Zhu Hong-Qiang, Feng Qing
PDF
导出引用
  • 利用光学气敏材料吸附气体,引起材料光学性质的变化来测量气体成分,是当前气敏传感研究领域的一个热点方向. 本文针对光学气敏材料金红石相TiO2(110)表面吸附CO分子的微观特性进行研究,采用基于密度泛函理论(DFT)体系下的第一性原理平面波超软赝势方法,计算了表面的吸附能、电子态密度、光学性质和电荷密度的变化. 结果表明:终止于二配位O原子的TiO2(110)面为最稳定表面,该表面吸附CO分子以C端吸附方式最为稳定,且氧空位浓度越高,越有助于对CO分子的吸附,吸附过程为放热. 在氧空位浓度为33%时,吸附能达到1.319 eV,吸附后结构趋于更加稳定. 表面吸附CO分子后,其实质是表面的氧空位氧化了CO分子,CO分子的电荷向材料表面转移. 含有氧空位的表面吸附CO分子后都改善了其在可见光范围内的光学性质,但是氧空位浓度越高,改善其光吸收和反射能力越明显,光学气敏传感特性表现越显著.
    Using the optical gas sensing materials to adsorb gases can cause the changes of the optical properties of materials. This method can be used to measure the gas composition and is a hot topic of current research in the field of gas sensitive sensors. This paper studies the micro-characteristics of rutile TiO2 (110) surface adsorption of CO molecules. By using the first-principles plane-wave ultrasoft pseudopotential method based on the density functional theory (DFT), the adsorption energy, electron density of states, optical properties and charge density of the surface are calculated. Results show that the TiO2 (110) surface terminating in two coordinated O atoms is the most stable surface, and the structure with C-terminal of CO molecules adsorbed on the surface is the most stable. The higher the oxygen vacancy concentration, the more helpful it is to the adsorption of surface CO molecules. This process is exothermic. When the oxygen vacancy concentration is 33%, the adsorption energy can reach 1.319 eV. After adsorption, the structure of the surface tends to be more stable. Oxygen vacancy oxidizing the CO molecule is the essence of the adsorption process, and the charge of a CO molecule is transferred to the material surface. The CO molecules adsorbed on TiO2 (110) surface containing oxygen vacancies can improve its optical properties in visible light range; moreover, the higher the concentration of oxygen vacancy, the more obvious the improvement of absorption, reflection ability and optical gas sensing performance.
    • 基金项目: 国家自然科学基金(批准号:61274128,61106129)和重庆市自然科学基金(批准号:CSTC2013JCYJA0731)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274128, 61106129), and the Natural Science Foundation of Chongqing City, China (Grant Nos. CSTC2013JCYJA0731).
    [1]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Acta Phys. Sin. 61 077101 (in Chinese) [张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德 2012 物理学报 61 077101]

    [2]

    Fujishima A, Honda K 1972 Nature 238 37

    [3]

    Khan S U M, Al-Shahry M, Ingler Jr W B 2002 Science 297 2243

    [4]

    Zhao J, Yang X D 2003 Building and Environment 38 645

    [5]

    Yu X Y, Liang W, Cheng J J 2000 Bulletin of the Chinese Ceramic Society 1 53 (in Chinese)[于向阳, 梁文, 程继健 2000 硅酸盐通报 1 53]

    [6]

    Chen X B, Liu L, Yu P Y, Peter Y Yu, Samuel S Mao 2011 Science 331 746

    [7]

    Wang Y, Feng Q, Wang W H, Yue Y X 2012 Acta Phys. Sin. 61 193102 (in Chinese) [王寅, 冯庆, 王渭华, 岳远霞 2012 物理学报 61 193102]

    [8]

    O'Regan B, Grätzel M 1991 Nature 353 737

    [9]

    Ashino M, Uchihashi T, Yokoyama K, Sugawaraa Y, Moritab S, Ishikawaa M 2000 Applied Surface Science 157 212

    [10]

    Hebenstreit E L, Hebenstreit W, Diebold U 2000 Surface Science 461 87

    [11]

    Wang Y J, Wang C Y, Wang S Y 2011 Chin. Phys. B 20 036801

    [12]

    Asari E, Souda R 2004 Solid State Communications 129 15

    [13]

    Cui W Y, Liu Z Z, Jiang Y J, Wang N, Feng J K 2012 Acta Chim. Sinica 70 2049 (in Chinese) [崔文颖, 刘子忠, 蒋亚军, 王娜, 封继康 2012 化学学报 70 2049]

    [14]

    Simon D, Simon P, Bates Y 2003 Phys. Rev. B 67 035421

    [15]

    Xiao B, Feng J, Chen J C, Yan J K, Gan G Y 2008 Acta Phys. Sin. 57 3769 (in Chinese) [肖冰, 冯晶, 陈敬超, 严继康, 甘国友 2008 物理学报 57 3769]

    [16]

    Wu X Y, Selloni A, Nayak S 2004 J. Chem Phys. 120 4512

    [17]

    Dan C, John T 2002 J. Phys. Chem. B 106 6184

    [18]

    Wang Y 2005 Acta Chim. Sin. 63 1023 (in Chinese) [汪洋 2005 化学学报 63 1023]

    [19]

    Wang Y, Meng L 2005 Acta Phys. Sin. 54 2207 (in Chinese) [汪洋, 孟亮 2005 物理学报 54 2207]

    [20]

    Linsebigler A, Lu G Q, Yates J 1995 Chem. Rev. 95 735

    [21]

    Linsebigler A, Lu G Q, Yates J 1995 J. Chem. Phys. 103 9438

    [22]

    Burnside S D, Shklover V, Barbé Barbe C, Comte P, Arendse F, Brooks K, Grätzel M 1998 Chem. Mater. 10 2419

    [23]

    Labat F, Baranek P, Adamo C 2008 J. Chem. Theory Comput. 4 341

    [24]

    Han Y, Liu C J, Ge Q F 2006 Phys. Chem. B 110 7463

    [25]

    Shen X C 1992 Semiconductor spectrum and optical properties (2nd Ed.) (Beijing: Science Press) (in Chinese) [沈学础 1992 半导体光谱与光学性质(第2版)(北京: 科学出版社)]

  • [1]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Acta Phys. Sin. 61 077101 (in Chinese) [张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德 2012 物理学报 61 077101]

    [2]

    Fujishima A, Honda K 1972 Nature 238 37

    [3]

    Khan S U M, Al-Shahry M, Ingler Jr W B 2002 Science 297 2243

    [4]

    Zhao J, Yang X D 2003 Building and Environment 38 645

    [5]

    Yu X Y, Liang W, Cheng J J 2000 Bulletin of the Chinese Ceramic Society 1 53 (in Chinese)[于向阳, 梁文, 程继健 2000 硅酸盐通报 1 53]

    [6]

    Chen X B, Liu L, Yu P Y, Peter Y Yu, Samuel S Mao 2011 Science 331 746

    [7]

    Wang Y, Feng Q, Wang W H, Yue Y X 2012 Acta Phys. Sin. 61 193102 (in Chinese) [王寅, 冯庆, 王渭华, 岳远霞 2012 物理学报 61 193102]

    [8]

    O'Regan B, Grätzel M 1991 Nature 353 737

    [9]

    Ashino M, Uchihashi T, Yokoyama K, Sugawaraa Y, Moritab S, Ishikawaa M 2000 Applied Surface Science 157 212

    [10]

    Hebenstreit E L, Hebenstreit W, Diebold U 2000 Surface Science 461 87

    [11]

    Wang Y J, Wang C Y, Wang S Y 2011 Chin. Phys. B 20 036801

    [12]

    Asari E, Souda R 2004 Solid State Communications 129 15

    [13]

    Cui W Y, Liu Z Z, Jiang Y J, Wang N, Feng J K 2012 Acta Chim. Sinica 70 2049 (in Chinese) [崔文颖, 刘子忠, 蒋亚军, 王娜, 封继康 2012 化学学报 70 2049]

    [14]

    Simon D, Simon P, Bates Y 2003 Phys. Rev. B 67 035421

    [15]

    Xiao B, Feng J, Chen J C, Yan J K, Gan G Y 2008 Acta Phys. Sin. 57 3769 (in Chinese) [肖冰, 冯晶, 陈敬超, 严继康, 甘国友 2008 物理学报 57 3769]

    [16]

    Wu X Y, Selloni A, Nayak S 2004 J. Chem Phys. 120 4512

    [17]

    Dan C, John T 2002 J. Phys. Chem. B 106 6184

    [18]

    Wang Y 2005 Acta Chim. Sin. 63 1023 (in Chinese) [汪洋 2005 化学学报 63 1023]

    [19]

    Wang Y, Meng L 2005 Acta Phys. Sin. 54 2207 (in Chinese) [汪洋, 孟亮 2005 物理学报 54 2207]

    [20]

    Linsebigler A, Lu G Q, Yates J 1995 Chem. Rev. 95 735

    [21]

    Linsebigler A, Lu G Q, Yates J 1995 J. Chem. Phys. 103 9438

    [22]

    Burnside S D, Shklover V, Barbé Barbe C, Comte P, Arendse F, Brooks K, Grätzel M 1998 Chem. Mater. 10 2419

    [23]

    Labat F, Baranek P, Adamo C 2008 J. Chem. Theory Comput. 4 341

    [24]

    Han Y, Liu C J, Ge Q F 2006 Phys. Chem. B 110 7463

    [25]

    Shen X C 1992 Semiconductor spectrum and optical properties (2nd Ed.) (Beijing: Science Press) (in Chinese) [沈学础 1992 半导体光谱与光学性质(第2版)(北京: 科学出版社)]

  • [1] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [2] 刘汝霖, 方粮, 郝跃, 池雅庆. 金红石TiO2中本征缺陷扩散性质的第一性原理计算. 物理学报, 2018, 67(17): 176101. doi: 10.7498/aps.67.20180818
    [3] 徐慧颖, 刘勇, 李仲缘, 杨玉军, 闫冰. CO分子四个电子态的振转谱:两种效应修正方法的比较. 物理学报, 2018, 67(21): 213301. doi: 10.7498/aps.67.20181469
    [4] 刘欢, 李公平, 许楠楠, 林俏露, 杨磊, 王苍龙. Cu离子注入单晶TiO2微结构及光学性质的模拟研究. 物理学报, 2016, 65(20): 206102. doi: 10.7498/aps.65.206102
    [5] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [6] 郭启云, 彭文屹, 严明明, 郭风丽. Mn70Fe30-xCox (x=0, 2, 4)合金的组织和磁诱发应变. 物理学报, 2013, 62(15): 157502. doi: 10.7498/aps.62.157502
    [7] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究. 物理学报, 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [8] 樊群超, 孙卫国, 李会东, 冯灏. CO电子基态P线系跃迁谱线的理论研究. 物理学报, 2011, 60(6): 063301. doi: 10.7498/aps.60.063301
    [9] 张建东, 杨春, 陈元涛, 张变霞, 邵文英. 金原子掺杂的碳纳米管吸附CO气体的密度泛函理论研究. 物理学报, 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [10] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [11] 刘建军. 掺Ga对ZnO电子态密度和光学性质的影响. 物理学报, 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [12] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [13] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究. 物理学报, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [14] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [15] 罗文华, 蒙大桥, 李 赣, 陈虎翅. CO在Pu(100)表面吸附的研究. 物理学报, 2008, 57(1): 160-164. doi: 10.7498/aps.57.160
    [16] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [17] 徐绍言, 陆博翘, 郑亚茹, 孙 雁. 过渡金属Fe,Co,Ni居里点附近热电势的实验研究. 物理学报, 2006, 55(5): 2529-2533. doi: 10.7498/aps.55.2529
    [18] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究. 物理学报, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [19] 郑 鹉, 王艾玲, 姜宏伟, 周云松, 李 彤. Co-Pt-C颗粒膜的磁性. 物理学报, 2004, 53(8): 2761-2765. doi: 10.7498/aps.53.2761
    [20] 郭鸿涌, 刘宝丹, 唐宁, 罗鸿志, 李养贤, 杨伏明, 吴光恒. Co和稳定元素对Nd3(Fe,Co,M)29(M=Ti,V,Cr) 化合物结构和磁性的影响. 物理学报, 2004, 53(1): 189-193. doi: 10.7498/aps.53.189
计量
  • 文章访问数:  2781
  • PDF下载量:  484
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-18
  • 修回日期:  2013-03-17
  • 刊出日期:  2014-07-05

光学气敏材料金红石相二氧化钛(110)面吸附CO分子的微观特性机理研究

  • 1. 重庆市光电功能材料重点实验室, 重庆 401331;
  • 2. 重庆师范大学光学工程重点实验室, 重庆 400047
    基金项目: 国家自然科学基金(批准号:61274128,61106129)和重庆市自然科学基金(批准号:CSTC2013JCYJA0731)资助的课题.

摘要: 利用光学气敏材料吸附气体,引起材料光学性质的变化来测量气体成分,是当前气敏传感研究领域的一个热点方向. 本文针对光学气敏材料金红石相TiO2(110)表面吸附CO分子的微观特性进行研究,采用基于密度泛函理论(DFT)体系下的第一性原理平面波超软赝势方法,计算了表面的吸附能、电子态密度、光学性质和电荷密度的变化. 结果表明:终止于二配位O原子的TiO2(110)面为最稳定表面,该表面吸附CO分子以C端吸附方式最为稳定,且氧空位浓度越高,越有助于对CO分子的吸附,吸附过程为放热. 在氧空位浓度为33%时,吸附能达到1.319 eV,吸附后结构趋于更加稳定. 表面吸附CO分子后,其实质是表面的氧空位氧化了CO分子,CO分子的电荷向材料表面转移. 含有氧空位的表面吸附CO分子后都改善了其在可见光范围内的光学性质,但是氧空位浓度越高,改善其光吸收和反射能力越明显,光学气敏传感特性表现越显著.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回