搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数字相干叠加的相干光正交频分复用系统中光纤非线性容忍性研究

陈雪梅 张静 易兴文 曾登科 杨合明 邱昆

引用本文:
Citation:

基于数字相干叠加的相干光正交频分复用系统中光纤非线性容忍性研究

陈雪梅, 张静, 易兴文, 曾登科, 杨合明, 邱昆

Fiber nonlinearity tolerance research of coherent optical orthogonal frequency division multiplexed system based on digital coherent superposition

Chen Xue-Mei, Zhang Jing, Yi Xing-Wen, Zeng Deng-Ke, Yang He-Ming, Qiu Kun
PDF
导出引用
  • 光正交频分复用系统中的光纤非线性效应制约着系统进一步的扩容. 针对此问题, 提出一种数字相干叠加的方法, 用于提高相干光正交频分复用系统对光纤非线性的容忍性. 仿真中, 5通道的波分复用下偏振复用相干光正交频分复用系统的每个通道传输四进制正交振幅调制映射的71.53 Gbit/s信号在光纤中传输400 km. 首先, 通道间隔为25 GHz, 与传统相干光正交频分复用系统相比, 色散补偿前后, 使用数字相干叠加的相干光正交频分复用系统的信噪比分别提升了6.02 dB和9.05 dB, 最佳入纤光功率均增大了2 dB; 其次, 通道间隔为50 GHz, 色散补偿前后, 信噪比分别提升了4.9 dB和8.75 dB. 通过理论推导及仿真, 验证了所提方法能有效消除相干光正交频分复用系统的一阶非线性失真, 进而提高系统对光纤非线性的容忍性.
    Fiber nonlinearity of optical orthogonal frequency division multiplexed (OFDM) system restricts the capacity improvement of optical fiber transmission. In this paper, we propose a novel digital coherent superposition (DCS) scheme to improve the tolerance to fiber nonlinearity in a coherent optical orthogonal frequency division multiplexed system. In simulation, 71.53 Gbit/s orthogonal frequency division multiplexed signal per channel with Hermitian symmetry is transmitted over 400 km standard single mode fiber in a wave division multiplexed-polarization-division multiplexed-coherent optical orthogonal frequency division multiplexed system with five channels. The 4-quadrature amplitude modulation is used for symbol mapping. For the receiver, after the conventional OFDM signal processing, we conduct DCS for OFDM subcarrier pairs, which requires only conjugation and summation in the x, y polarization direction, respectively. Firstly, the channel spacing is 25 GHz, the maximum signal-to-noise ratio improvement is 9.05 dB or 6.02 dB with or without symmetric dispersion compensation compared with a conventional orthogonal frequency division multiplexed system. The optimum launch power is increased by 2 dB. Secondly, the channel spacing is changed to 50 GHz to investigate the nonlinearity tolerance at different channel spacings in the wave division multiplexed system, the maximum signal-to-noise ratio improvement is 8.75 dB or 4.9 dB with or without symmetric dispersion compensation, respectively. Theoretical and simulation analysis show that the proposed method in this paper can effectively mitigate the first-order nonlinear distortions and hence improve the tolerance of coherent optical orthogonal frequency division multiplexed system with different channel spacings to fiber nonlinear effects.
    • 基金项目: 国家高技术研究发展计划(批准号: 2013AA01340, 2012AA011302, 2012AA011304)、国家自然科学基金(批准号: 61405024, 61107060, 61405024)和中央高校基本科研业务费专项资金(批准号: ZYGX2014J004)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant Nos. 2013AA01340, 2012AA011302, 2012AA011304), the National Natural Science Foundation of China (Grant Nos. 61405024, 61107060, 61405024), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. ZYGX2014J004).
    [1]

    Shieh W, Yi X W, Tang Y 2005 Electron. Lett. 43 183

    [2]

    Lowery A J, Du L, Armstrong J 2006 Proceedings of Optical Fiber Communication Anaheim, CA USA, March 5-10, 2006 PDP39

    [3]

    Jansen S L, Morita I, Schenk C W, Takeda N, Tanaka H 2008 Lightw. Technol. 26 6

    [4]

    Qian D, Huang M, Ip E, Huang Y, Shao Y, Hu J, Wang T 2011 Proceedings of Optical Fiber Communication Los Angeles, CA USA, March 6-11, 2011 PDPB5

    [5]

    Dai F, Yang B J 2005 Physics 34 450 (in Chinese) [戴峰, 杨伯君 2005 物理 34 450]

    [6]

    Jansen S L, Al Amin A, Takahashi H, Morita I, Tanaka H 2009 IEEE Photon. Technol. Lett. 21 802

    [7]

    Wang R M, Wang X P, Wu Z K, Yao X, Zhang Y Q, Zhang Y P 2014 Chin. Phys. B 23 054209

    [8]

    Mitra P P, Stark J B 2001 Nature 411 1027

    [9]

    Essiambre R J, Foschini G J, Kramer G, Winzer P J 2008 Phys. Rev. Lett. 101 163901

    [10]

    Shieh W, Chen X 2011 IEEE Photon. J. 3 158

    [11]

    Roberts K, Li C D, Strawczynski L, O’Sullivan M, Hardcastle I 2006 IEEE Photon. Technol. Lett. 18 403

    [12]

    Mateo E F, Zhu L, Li G 2008 Opt. Express 16 16124

    [13]

    Liu X, Chraplyvy A R, Winzer P J 2013 Nature Photon. 7 560

    [14]

    Yi X W, Yang Q, Qiu K 2013 Asia Communications and Photonics Conference Beijing, China, November 12-15, 2013 AF2F. 76

    [15]

    Yi X W, Chen X M, Dinesh S, Li C, Luo M, Yang Q, Li Z H, Qiu K 2014 Opt. Express 22 13454

    [16]

    Louchet H, Hodzic A, Petermann K, Robinson A, Epworth R 2005 IEEE Photon. Technol. Lett. 17 2089

    [17]

    Yi X W, Shieh W, Tang Y 2007 IEEE Photon. Technol. Lett. 19 919

  • [1]

    Shieh W, Yi X W, Tang Y 2005 Electron. Lett. 43 183

    [2]

    Lowery A J, Du L, Armstrong J 2006 Proceedings of Optical Fiber Communication Anaheim, CA USA, March 5-10, 2006 PDP39

    [3]

    Jansen S L, Morita I, Schenk C W, Takeda N, Tanaka H 2008 Lightw. Technol. 26 6

    [4]

    Qian D, Huang M, Ip E, Huang Y, Shao Y, Hu J, Wang T 2011 Proceedings of Optical Fiber Communication Los Angeles, CA USA, March 6-11, 2011 PDPB5

    [5]

    Dai F, Yang B J 2005 Physics 34 450 (in Chinese) [戴峰, 杨伯君 2005 物理 34 450]

    [6]

    Jansen S L, Al Amin A, Takahashi H, Morita I, Tanaka H 2009 IEEE Photon. Technol. Lett. 21 802

    [7]

    Wang R M, Wang X P, Wu Z K, Yao X, Zhang Y Q, Zhang Y P 2014 Chin. Phys. B 23 054209

    [8]

    Mitra P P, Stark J B 2001 Nature 411 1027

    [9]

    Essiambre R J, Foschini G J, Kramer G, Winzer P J 2008 Phys. Rev. Lett. 101 163901

    [10]

    Shieh W, Chen X 2011 IEEE Photon. J. 3 158

    [11]

    Roberts K, Li C D, Strawczynski L, O’Sullivan M, Hardcastle I 2006 IEEE Photon. Technol. Lett. 18 403

    [12]

    Mateo E F, Zhu L, Li G 2008 Opt. Express 16 16124

    [13]

    Liu X, Chraplyvy A R, Winzer P J 2013 Nature Photon. 7 560

    [14]

    Yi X W, Yang Q, Qiu K 2013 Asia Communications and Photonics Conference Beijing, China, November 12-15, 2013 AF2F. 76

    [15]

    Yi X W, Chen X M, Dinesh S, Li C, Luo M, Yang Q, Li Z H, Qiu K 2014 Opt. Express 22 13454

    [16]

    Louchet H, Hodzic A, Petermann K, Robinson A, Epworth R 2005 IEEE Photon. Technol. Lett. 17 2089

    [17]

    Yi X W, Shieh W, Tang Y 2007 IEEE Photon. Technol. Lett. 19 919

  • [1] 何乐, 褚应波, 戴能利, 李进延. 石英基L-band扩展掺铒光纤及其放大性能研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220503
    [2] 李红霞, 江阳, 白光富, 单媛媛, 梁建惠, 马闯, 贾振蓉, 訾月姣. 有源环形谐振腔辅助滤波的单模光电振荡器. 物理学报, 2015, 64(4): 044202. doi: 10.7498/aps.64.044202
    [3] 王逸林, 马世龙, 梁国龙, 范展. 基于多径分集的啁啾扩频正交频分复用水声通信系统. 物理学报, 2014, 63(4): 044302. doi: 10.7498/aps.63.044302
    [4] 李晶, 宁提纲, 裴丽, 简伟, 郑晶晶, 油海东, 孙剑, 王一群, 李超. 基于谐波拟合产生周期性三角形光脉冲串的实验研究. 物理学报, 2014, 63(15): 154210. doi: 10.7498/aps.63.154210
    [5] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 双向使用高非线性光纤实现同时解复用出两路10 Gbit/s信号. 物理学报, 2014, 63(2): 024201. doi: 10.7498/aps.63.024201
    [6] 李晶, 宁提纲, 裴丽, 简伟, 油海东, 陈宏尧, 张婵, 李超. 基于双平行马赫曾德调制器的动态可调光载波边带比光单边带调制:理论分析与实验研究. 物理学报, 2013, 62(22): 224210. doi: 10.7498/aps.62.224210
    [7] 王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽. 基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究. 物理学报, 2012, 61(8): 084214. doi: 10.7498/aps.61.084214
    [8] 刘娜, 席丽霞, 李建平, 张晓光, 田凤, 周浩. 一种提高基于循环频移器的多载波光源光信噪比的方案. 物理学报, 2012, 61(17): 174209. doi: 10.7498/aps.61.174209
    [9] 李源, 成浩然, 李蔚, 余少华, 杨铸. 一种光纤通信系统中非线性克尔效应抑制新方法. 物理学报, 2012, 61(19): 194205. doi: 10.7498/aps.61.194205
    [10] 李晶, 宁提纲, 裴丽, 周倩, 胡旭东, 祁春慧, 高嵩, 杨龙. 三角形谱啁啾光纤光栅的制备及其在光纤无线单边带调制系统中的应用. 物理学报, 2011, 60(5): 054203. doi: 10.7498/aps.60.054203
    [11] 王菊, 于晋龙, 罗俊, 王文睿, 韩丙辰, 吴波, 郭精忠, 杨恩泽. 基于信号抽运的光纤光参量放大的全光3R再生系统. 物理学报, 2011, 60(9): 091201. doi: 10.7498/aps.60.091201
    [12] 张建忠, 王安帮, 王云才. 混沌光通信与OC-48光纤通信的波分复用. 物理学报, 2009, 58(6): 3793-3798. doi: 10.7498/aps.58.3793
    [13] 谭中伟, 曹继红, 陈 勇, 刘 艳, 宁提纲, 简水生. 低串扰的多波长光纤光栅色散补偿器. 物理学报, 2007, 56(1): 274-279. doi: 10.7498/aps.56.274
    [14] 谭中伟, 宁提纲, 刘 艳, 陈 勇, 曹继红, 董小伟, 马丽娜, 简水生. 基于啁啾光纤光栅的色散管理. 物理学报, 2006, 55(6): 2799-2803. doi: 10.7498/aps.55.2799
    [15] 童 治, 魏 淮, 简水生. 分布式光纤拉曼放大器在长距离光传输系统中的优化设计. 物理学报, 2006, 55(4): 1873-1882. doi: 10.7498/aps.55.1873
    [16] 曾 丽, 娄采云, 章恩耀. 偏振模色散模拟器的特性. 物理学报, 2005, 54(3): 1241-1246. doi: 10.7498/aps.54.1241
    [17] 马永红, 谢世钟, 陈明华. 拉曼放大系统传输性能的比较. 物理学报, 2005, 54(1): 123-128. doi: 10.7498/aps.54.123
    [18] 谭中伟, 郑 凯, 刘 艳, 傅永军, 陈 勇, 曹继红, 宁提纲, 董小伟, 马丽娜, 简水生. 基于啁啾光纤光栅的色散补偿器在超长距离密集波分复用系统中的应用. 物理学报, 2005, 54(11): 5218-5223. doi: 10.7498/aps.54.5218
    [19] 江 建, 饶云江, 周昌学, 朱 涛. 基于光放大的光纤Fizeau应变传感器频分复用系统. 物理学报, 2004, 53(7): 2221-2225. doi: 10.7498/aps.53.2221
    [20] 巩稼民, 刘 娟, 方 强, 王永昌. 密集波分复用石英光纤通信系统中受激Raman散射的稳态分析模型. 物理学报, 2000, 49(7): 1287-1291. doi: 10.7498/aps.49.1287
计量
  • 文章访问数:  2904
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-23
  • 修回日期:  2015-01-20
  • 刊出日期:  2015-07-05

基于数字相干叠加的相干光正交频分复用系统中光纤非线性容忍性研究

  • 1. 电子科技大学通信与信息工程学院, 光纤传感与通信教育部重点实验室, 成都 611731
    基金项目: 国家高技术研究发展计划(批准号: 2013AA01340, 2012AA011302, 2012AA011304)、国家自然科学基金(批准号: 61405024, 61107060, 61405024)和中央高校基本科研业务费专项资金(批准号: ZYGX2014J004)资助的课题.

摘要: 光正交频分复用系统中的光纤非线性效应制约着系统进一步的扩容. 针对此问题, 提出一种数字相干叠加的方法, 用于提高相干光正交频分复用系统对光纤非线性的容忍性. 仿真中, 5通道的波分复用下偏振复用相干光正交频分复用系统的每个通道传输四进制正交振幅调制映射的71.53 Gbit/s信号在光纤中传输400 km. 首先, 通道间隔为25 GHz, 与传统相干光正交频分复用系统相比, 色散补偿前后, 使用数字相干叠加的相干光正交频分复用系统的信噪比分别提升了6.02 dB和9.05 dB, 最佳入纤光功率均增大了2 dB; 其次, 通道间隔为50 GHz, 色散补偿前后, 信噪比分别提升了4.9 dB和8.75 dB. 通过理论推导及仿真, 验证了所提方法能有效消除相干光正交频分复用系统的一阶非线性失真, 进而提高系统对光纤非线性的容忍性.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回