搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N-F共掺杂锐钛矿二氧化钛(101)面纳米管的第一性原理研究

朱学文 徐利春 刘瑞萍 杨致 李秀燕

引用本文:
Citation:

N-F共掺杂锐钛矿二氧化钛(101)面纳米管的第一性原理研究

朱学文, 徐利春, 刘瑞萍, 杨致, 李秀燕

N-F co-doped in titaninum dioxide nanotube of the anatase (101) surface: a first-principles study

Zhu Xue-Wen, Xu Li-Chun, Liu Rui-Ping, Yang Zhi, Li Xiu-Yan
PDF
导出引用
  • 共掺杂是提高二氧化钛纳米管可见光催化性能的一种有效方式. 采用基于密度泛函理论的第一性原理方法, 研究了N单掺杂、F单掺杂及N-F共掺杂二氧化钛纳米管的原子结构、电子性质和光学性质. 计算结果表明, 相比N单掺杂和F单掺杂, N-F共掺杂二氧化钛纳米管的形成能更低, 掺杂后的体系热力学稳定性更好. 此外, 相比未掺杂时的带隙, N-F共掺杂后体系的带隙变化最多, 减少了0.557 eV, 而这主要源于价带顶附近的杂质能级的贡献. 此外, 通过分析掺杂后的光催化活性发现, N-F共掺杂时纳米管的还原性和氧化性都有所降低, 但并没有丧失活性, 并且光吸收谱表明, 共掺杂体系的红移现象最为明显. 因此, N-F共掺杂可有效提高二氧化钛纳米管可见光的光催化性能.
    The method of co-doping is very useful to improve the photocatalytic performances of titanium dioxide nanotubes. The absorption capacity to the visible light of the titanium dioxide nanotubes can be improved significantly in experiment by doping both N and F in titanium dioxide nanotubes, but the theoretical explanations are still not clear. Doping the atom N alone, the atom F alone, and both N and F in titanium dioxide nanotubes respectively, their atomic structures, electronic properties and optical performance are studied by the first principles method based on the density functional theory. It is found that formation energies are lower in titanium-rich environment than that in oxygen-rich environment. In titanium-rich environment, the N-F co-doped TiO2 nanotube has the low formation energy and stable thermodynamic system compared with the N alone and the F alone doped TiO2 nanotube. Besides, the O3C can be replaced more easily than the O2C when doping N alone, F alone and co-doping N-F in TiO2 nanotube. By analyzing the energy band, we can find that the band gap changes little with doping N and the change of the band gap for the co-doping N-F case is the most prominent, which reduces by 0.557 eV compared with that for the un-doped TiO2 nanotube case, and this is mainly from the contributions of the impurity level near the top of the valence band. Besides, the different charges are calculated and it is indicated that the ability to gain electrons of N is stronger than that of F, and through analyzing the photocatalytic performance, it is found that though the gap of the nanotube is larger than that of the body, the reducibility of nanotube is better than that of the body. Both the reducibility and the oxidability of the nanotube are reduced but its activity is not lost when co-coping the atoms of N and F in titanium dioxide nanotubes. Moreover, the optical absorption spectrum shows that the red shift phenomenon is obvious for doped system and also for the co-doped system. Therefore, co-doping both N and F in titanium dioxide nanotubes is the most useful method to improve the photocatalytic performances of the TiO2 nanotubes.
    • 基金项目: 国家自然科学基金(批准号: 51401142)和山西省自然科学基金(批准号: 2012011021-3)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51401142) and the National Natural Science Foundation of Shanxi Province, China (Grant No. 2012011021-3).
    [1]

    Regonini D, Bowen C R, Jaroenworaluck A 2013 Mater. Sci. Eng. R 74 377

    [2]

    Fujishima A, Honda K 1972 Nature 238 37

    [3]

    Bessekhouad Y, Robert D, Weber J V, Chaoui N 2004 J. Phoche. Photobiol. A: Chem. 167 49

    [4]

    Liu Y M, Liang W, Zhang W G, Zhang J J, Han P D

    [5]

    Xu M, Da P M, Wu H Y, Zhao D Y, Zheng G F 2012 Nano Lett. 12 1503

    [6]

    Yang D J, Park H, Cho S J, Kim H G, Choi W Y 2008 J. Phys. Chem. Solids 69 1272

    [7]

    Orzali T, Casarin M, Granozzi G, Sambi M, Vittadini A 2006 Phys. Rev. Lett. 971 56101

    [8]

    Yin W J, Tang H, Wei S H, Al-Jassim M M, Turner J, Yan Y F 2010 Phys. Rev. B 82 045106

    [9]

    Lee W J, Lee J M, Kochuveedu S T, Han T H, Jeong H Y, Park M, Yun J M, Kwon J, No K, Kim D H, Kim S O 2012 ACS Nano 6 935

    [10]

    Tang Z R, Yin X, Zhang Y H, Xu Y J

    [11]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 物理学报 62 203103]

    [12]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]

    [13]

    Wang W S, Wang D H, Qu W G, Xu A W 2012 J. Phys. Chem. C 116 19893

    [14]

    Wei M, Liu Y, Gu Z Z, Liu Z D 2011 J. Chin. Chem. Soc. 58 516

    [15]

    Pang Y L, Lim S, Ong H C, Chong W T 2014 Appl. Catal. A 481 127

    [16]

    Hoyer P 1996 Langmuir 12 1411

    [17]

    Xie Q, Meng Q Q, Zhuang G L, Wang J G, Li X N 2012 Int. J. Quantum Chem. 112 2585

    [18]

    Liu H, Lin M H, Tan K 2012 Acta Phys. -Chim. Sin. 28 1843 (in Chinese) [刘昊, 林梦海, 谭凯 2012 物理化学学报 28 1843]

    [19]

    Dong H Q, Pan X, Xie Q, Meng Q Q, Gao J R, Wang J G 2012 Acta Phys. -Chim. Sin. 28 44 (in Chinese) [ 董华青, 潘西, 谢琴, 孟强强, 高建荣, 王建国 2012 物理化学学报 28 44]

    [20]

    Park J H, Kim S, Bard A J 2006 Nano Lett. 6 24

    [21]

    Yuan B, Wang Y, Bian H D, Shen T K 2013 Appl. Surf. Sci. 280 523

    [22]

    Ma X G, Miao L, Bie S W, Jiang J J 2010 Solid State Commun. 150 689

    [23]

    Suzuki T M, Kitahara G, Arai T, Matsuoka Y, Morikawa T 2014 Chem. Commun. 50 7614

    [24]

    Li Q, Shang J K 2009 Environ. Sci. Technol. 43 8923

    [25]

    Chen Q L, Tang C Q 2009 Acta Phys. -Chim. Sin. 25 915 (in Chinese) [陈琦丽, 唐超群 2009 物理化学学报 25 915]

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [29]

    Mowbray D J, Martinez J I, García-Lastra J M, Thygesen K S, Jacobsen K W 2009 J. Phys. Chem. C 113 12301

    [30]

    Liu Z J, Zhang Q, Qin L C 2007 Solid State Commun. 141 168

    [31]

    Yang K S, Dai Y, Huang B, Whangbo M H 2008 Chem. Mater. 20 6529

    [32]

    Le L C, Ma X G, Tang H, Wang Y, Li X, Jiang J J 2010 Acta Phys. Sin. 59 1314 (in Chinese) [乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军 2010 物理学报 59 1314]

    [33]

    Zhang H Y, Dong S L 2013 Chin. Phys. Lett. 30 043102

    [34]

    Yalçn Y, Kılıç M, Çınar Z 2010 Appl. Catal. B: Environ. 99 469

    [35]

    Banisharif A, Khodadadi A A, Mortazavi Y, Firooz A A, Beheshtian J, Agah S, Menbari S 2014 Appl. Catal. B 165 209

    [36]

    Yang Y Q, Zhang R R, Li J B, Lin S W 2014 Nanoscale Res. Lett. 9 46

    [37]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232

  • [1]

    Regonini D, Bowen C R, Jaroenworaluck A 2013 Mater. Sci. Eng. R 74 377

    [2]

    Fujishima A, Honda K 1972 Nature 238 37

    [3]

    Bessekhouad Y, Robert D, Weber J V, Chaoui N 2004 J. Phoche. Photobiol. A: Chem. 167 49

    [4]

    Liu Y M, Liang W, Zhang W G, Zhang J J, Han P D

    [5]

    Xu M, Da P M, Wu H Y, Zhao D Y, Zheng G F 2012 Nano Lett. 12 1503

    [6]

    Yang D J, Park H, Cho S J, Kim H G, Choi W Y 2008 J. Phys. Chem. Solids 69 1272

    [7]

    Orzali T, Casarin M, Granozzi G, Sambi M, Vittadini A 2006 Phys. Rev. Lett. 971 56101

    [8]

    Yin W J, Tang H, Wei S H, Al-Jassim M M, Turner J, Yan Y F 2010 Phys. Rev. B 82 045106

    [9]

    Lee W J, Lee J M, Kochuveedu S T, Han T H, Jeong H Y, Park M, Yun J M, Kwon J, No K, Kim D H, Kim S O 2012 ACS Nano 6 935

    [10]

    Tang Z R, Yin X, Zhang Y H, Xu Y J

    [11]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 物理学报 62 203103]

    [12]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]

    [13]

    Wang W S, Wang D H, Qu W G, Xu A W 2012 J. Phys. Chem. C 116 19893

    [14]

    Wei M, Liu Y, Gu Z Z, Liu Z D 2011 J. Chin. Chem. Soc. 58 516

    [15]

    Pang Y L, Lim S, Ong H C, Chong W T 2014 Appl. Catal. A 481 127

    [16]

    Hoyer P 1996 Langmuir 12 1411

    [17]

    Xie Q, Meng Q Q, Zhuang G L, Wang J G, Li X N 2012 Int. J. Quantum Chem. 112 2585

    [18]

    Liu H, Lin M H, Tan K 2012 Acta Phys. -Chim. Sin. 28 1843 (in Chinese) [刘昊, 林梦海, 谭凯 2012 物理化学学报 28 1843]

    [19]

    Dong H Q, Pan X, Xie Q, Meng Q Q, Gao J R, Wang J G 2012 Acta Phys. -Chim. Sin. 28 44 (in Chinese) [ 董华青, 潘西, 谢琴, 孟强强, 高建荣, 王建国 2012 物理化学学报 28 44]

    [20]

    Park J H, Kim S, Bard A J 2006 Nano Lett. 6 24

    [21]

    Yuan B, Wang Y, Bian H D, Shen T K 2013 Appl. Surf. Sci. 280 523

    [22]

    Ma X G, Miao L, Bie S W, Jiang J J 2010 Solid State Commun. 150 689

    [23]

    Suzuki T M, Kitahara G, Arai T, Matsuoka Y, Morikawa T 2014 Chem. Commun. 50 7614

    [24]

    Li Q, Shang J K 2009 Environ. Sci. Technol. 43 8923

    [25]

    Chen Q L, Tang C Q 2009 Acta Phys. -Chim. Sin. 25 915 (in Chinese) [陈琦丽, 唐超群 2009 物理化学学报 25 915]

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [29]

    Mowbray D J, Martinez J I, García-Lastra J M, Thygesen K S, Jacobsen K W 2009 J. Phys. Chem. C 113 12301

    [30]

    Liu Z J, Zhang Q, Qin L C 2007 Solid State Commun. 141 168

    [31]

    Yang K S, Dai Y, Huang B, Whangbo M H 2008 Chem. Mater. 20 6529

    [32]

    Le L C, Ma X G, Tang H, Wang Y, Li X, Jiang J J 2010 Acta Phys. Sin. 59 1314 (in Chinese) [乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军 2010 物理学报 59 1314]

    [33]

    Zhang H Y, Dong S L 2013 Chin. Phys. Lett. 30 043102

    [34]

    Yalçn Y, Kılıç M, Çınar Z 2010 Appl. Catal. B: Environ. 99 469

    [35]

    Banisharif A, Khodadadi A A, Mortazavi Y, Firooz A A, Beheshtian J, Agah S, Menbari S 2014 Appl. Catal. B 165 209

    [36]

    Yang Y Q, Zhang R R, Li J B, Lin S W 2014 Nanoscale Res. Lett. 9 46

    [37]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232

  • [1] 叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉. Ti, V, Co, Ni掺杂二维CrSi2材料的电学、磁学及光学性质的第一性原理研究. 物理学报, 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [2] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质. 物理学报, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [3] 程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂. Cu,O共掺杂AlN晶体电子结构与光学性质研究. 物理学报, 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [4] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [5] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06. 物理学报, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [6] 余志强, 张昌华, 郎建勋. P掺杂硅纳米管电子结构与光学性质的研究. 物理学报, 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [7] 李倩倩, 郝秋艳, 李英, 刘国栋. 稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究. 物理学报, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [8] 宋久旭, 杨银堂, 郭立新, 王平, 张志勇. 反位缺陷对碳化硅纳米管电子结构和光学性质影响研究. 物理学报, 2012, 61(23): 237301. doi: 10.7498/aps.61.237301
    [9] 李春霞, 党随虎. Ag, Zn掺杂对CdS电子结构和光学性质的影响. 物理学报, 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [10] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究 . 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [11] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究. 物理学报, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [12] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究. 物理学报, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [13] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [14] 胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋. Fe和Ni共掺杂ZnO的电子结构和光学性质. 物理学报, 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [15] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [16] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [17] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [18] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [19] 丁迎春, 向安平, 徐 明, 祝文军. 掺稀土元素(Y,La)的γ-Si3N4的电子结构和光学性质. 物理学报, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [20] 钱 磊, 滕 枫, 徐 征, 权善玉, 刘德昂, 王元敏, 王永生, 徐叙瑢. 掺杂二氧化钛纳米管对有机电致发光性能的影响. 物理学报, 2006, 55(2): 929-934. doi: 10.7498/aps.55.929
计量
  • 文章访问数:  3709
  • PDF下载量:  402
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-24
  • 修回日期:  2015-03-03
  • 刊出日期:  2015-07-05

N-F共掺杂锐钛矿二氧化钛(101)面纳米管的第一性原理研究

  • 1. 太原理工大学物理与光电工程学院, 太原 030024
    基金项目: 国家自然科学基金(批准号: 51401142)和山西省自然科学基金(批准号: 2012011021-3)资助的课题.

摘要: 共掺杂是提高二氧化钛纳米管可见光催化性能的一种有效方式. 采用基于密度泛函理论的第一性原理方法, 研究了N单掺杂、F单掺杂及N-F共掺杂二氧化钛纳米管的原子结构、电子性质和光学性质. 计算结果表明, 相比N单掺杂和F单掺杂, N-F共掺杂二氧化钛纳米管的形成能更低, 掺杂后的体系热力学稳定性更好. 此外, 相比未掺杂时的带隙, N-F共掺杂后体系的带隙变化最多, 减少了0.557 eV, 而这主要源于价带顶附近的杂质能级的贡献. 此外, 通过分析掺杂后的光催化活性发现, N-F共掺杂时纳米管的还原性和氧化性都有所降低, 但并没有丧失活性, 并且光吸收谱表明, 共掺杂体系的红移现象最为明显. 因此, N-F共掺杂可有效提高二氧化钛纳米管可见光的光催化性能.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回