搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电体中极化长程涨落的光子关联谱实验研究

张明俊 郭智 邰仁忠 张祥志 罗豪甦

引用本文:
Citation:

铁电体中极化长程涨落的光子关联谱实验研究

张明俊, 郭智, 邰仁忠, 张祥志, 罗豪甦

Experimental study of photon correlation spectroscopy for the long-range fluctuation of polarization in ferroelectrics

Zhang Ming-Jun, Guo Zhi, Tai Ren-Zhong, Zhang Xiang-Zhi, Luo Hao-Su
PDF
导出引用
  • 从极化团簇的随机涨落出发, 利用维纳过程模型, 推导了铁电体中极化长程涨落的弛豫规律以及光强自相关函数所可能的表现形式. 阐述了微观极化团簇的弛豫过程与宏观测量弛豫规律之间的联系. 通过对原有氦氖激光光子关联谱实验装置进行改进, 观测了BaTiO3和0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3单晶中极化团簇长程涨落在居里点和立方到四方相变点附近的弛豫过程. 在BaTiO3中发现极化团簇长程涨落在居里点之上4 K存在双弛豫现象, 此现象与其有序无序相变机理相联系. 在Pb(Mg1/3Nb2/3)O3-0.29PbTiO3中发现极化团簇长程涨落在相变点两侧都存在双弛豫现象. 利用推导的理论结果很好地拟合了实验结果并提取了极化团簇长程涨落的弛豫时间. 两种样品中极化团簇长程涨落的弛豫时间都在相变点出现突变, 并呈现临界慢化现象.
    Based on the theory of random fluctuation of polarization clusters and the model of Wiener random process, the relaxation law of long-range fluctuation of polarization and the possible forms of light intensity autocorrelation function g2(τ) measured from photon correlation spectroscopy (PCS) experiments have been derived. The relationship between relaxation mechanisms of microscopic polarization clusters and macro relaxation laws is expounded. This research supplies a theoretical model for the application of PCS in researching the relaxation process of polarization clusters in ferroelectrics. Based on the improved He-Ne laser PCS experimental set-up, the relaxation process of long-range fluctuation of polarization clusters in BaTiO3 and 0.71Pb (Mg1/3Nb2/3) O3-0.29PbTiO3 single crystals near phase transition temperature is studied. As for BaTiO3, the dual relaxation processes of long-range fluctuation of polarization clusters are observed at temperatures above TC+4 K, which may be related to its order-disorder mechanism of phase transition. For 0.71Pb (Mg1/3Nb2/3) O3-0.29PbTiO3, the dual relaxation processes exist on both sides of the cubic-tetragonal phase transition temperature. The PCS experimental results are fitted well by the derived theoretical model, and the characteristic relaxation times of long-range fluctuation of polarization clusters are extracted. Two relaxation times, τs and τl corresponding to short and long relaxation time, respectively, are initially observed, where τs is several microseconds, and τl is tens of microseconds. The abrupt increase of relaxation times at phase transition temperature and the phenomenon of critical slowing down can be observed in the two samples.
    • 基金项目: 国家自然科学基金杰出青年基金(批准号: 11225527)、国家自然科学基金重点基金(批准号: 5133002)、国家重点基础研究发展计划(批准号: 2013CB632901)、上海市学术带头人项目(批准号: 13XD1404400)和国家自然科学基金青年基金(批准号: 110311005147)资助的课题.
    • Funds: Project supported by the National Natural Science Fund for Distinguished young Scholars of China (Grant No. 11225527), the Key Program of National Natural Science Foundation of China (Grant No. 5133002), the National key Basic Research Program of China (Grant No. 2013CB632901), the Shanghai Academic Leadership Program, China (Grant No. 13XD1404400), and the National Natural Science Foundation of China (Grant Nos. 110311005147).
    [1]

    Pike E R, Abbiss J B 1997 Light Scattering and Photon Correlation Spectroscopy (Vol. 40) (Dordrecht: Kluwer Academic Publishers) pp65-67

    [2]

    Lin Y, Yang G C, Wang Y W 2013 Acta Phys. Sin. 62 118702 (in Chinese) [林瑜, 杨光参, 王艳伟 2013 物理学报 62 118702]

    [3]

    Liu X Y, Shen J, Zhu X J, Sun X M, Liu W 2012 Acta Opt. Sin. 32 0629002 (in Chinese) [刘晓艳, 申晋, 朱新军, 孙贤明, 刘伟 2012 光学学报 32 0629002]

    [4]

    Wang L N, Zhao X Y, Zhang L L, Huang Y N 2012 Chin. Phys. B 21 086403

    [5]

    Kleemann W, Licinio P, Woike T, Pankrath R 2001 Phys. Rev. Lett. 86 6014

    [6]

    Elissalde C, Ravez J 2001 J. Mater. Chem. 11 1957

    [7]

    Zhao J Y, Cui B, Chang Z G, Tang Z X 2008 Mater. Rev. 22 21 (in Chinese) [赵俊英, 崔斌, 畅柱国, 唐宗薰 2008 材料导报 22 21]

    [8]

    Chu R Q, Xu Z J, Li G R, Zeng H R, Yu H F, Shao X, Luo H S, Yin Q R 2005 Acta Phys. Sin. 54 935 (in Chinese) [初瑞清, 徐志军, 李国荣, 曾华荣, 余寒峰, 邵鑫, 罗豪甦, 殷庆瑞 2005 物理学报 54 935]

    [9]

    Cochran W 1960 Advan. Phys. 9 387

    [10]

    Harada J, Axe J D, Shirane G 1971 Phys. Rev. B 4 155

    [11]

    Vogt H, Sanjurjo J A, Rossbroich G 1982 Phys. Rev. B 26 5904

    [12]

    Presting H, Sanjurjo J A, Vogt H 1983 Phys. Rev. B 28 6097

    [13]

    Sokoloff J P, Chase L L, Rytz D 1988 Phys. Rev. B 38 597

    [14]

    Comes R, Lambert M, Guinier A 1968 Solid State Commun. 6 715

    [15]

    Zalar B, Laguta V V, Blinc R 2003 Phys. Rev. Lett. 90 037601

    [16]

    Zalar B, Levar A, Seliger J, Blinc R, Laguta V V, Itoh M 2005 Phys. Rev. B 71 064107

    [17]

    Ko J H, Kim T H, Roleder K, Rytz D, Kojima S 2011 Phys. Rev. B 84 094123

    [18]

    Yamada Y, Shirane G, Linz A 1969 Phys. Rev. 177 848

    [19]

    Tai R Z, Namikawa K, Sawada A, Kishimoto M, Tanaka M, Lu P, Nagashima K, Maruyama H, Ando M 2004 Phys. Rev. Lett. 93 087601

    [20]

    Namikawa K, Kishimoto M, Nasu K, Matsushita E, Tai R Z, Sukegawa K, Yamatani H, Hasegawa H, Nishikino M, Tanaka M, Nagashima K 2009 Phys. Rev. Lett. 103 197401

    [21]

    Yan R, Guo Z, Tai R, Xu H, Zhao X, Lin D, Li X, Luo H 2008 Appl. Phys. Lett. 93 192908

    [22]

    Zhang M J, Guo Z, Tai R Z, Luo H S, Namikawa K 2015 Jpn. J. Appl. Phys. 54 042401

    [23]

    Li F, Zhang S J, Li Z R, Xu Z 2012 Prog. Phys. 32 178 (in Chinese) [李飞, 张树君, 李振荣, 徐卓 2012 物理学进展 32 178]

    [24]

    Tyunina M, Levoska J 2001 Phys. Rev. B 63 224102

    [25]

    Smolenskii G A, Isupov V A, Agranovskaya A I, Popov S N 1961 Sov. Phys. Solid State 2 2584

    [26]

    Cross L E 1987 Ferroelectrics 76 241

    [27]

    Viehland D, Jang S J, Cross L E 1990 J. Appl. Phys. 68 2916

    [28]

    Pirc R, Blinc R 1999 Phys. Rev. B 60 13470

    [29]

    Ko J H, Kim D H, Tsukada S, Kojima S 2010 Phys. Rev. B 82 104110

    [30]

    Xu G, Wen J, Stock C, Gehring P M 2008 Nat. Mater. 7 562

    [31]

    Bovtun V, Petzelt J, Porokhonskyy V, Kamba S, Yakimenko Y 2001 J. Eur. Ceram. Soc. 21 1307

    [32]

    Tagantsev A K, Glazounov A E 1998 Phys. Rev. B 57 18

    [33]

    Lambert M, Comes R 1969 Solid State Commun. 7 305

    [34]

    Bokov A A, Ye Z G 2006 J. Mater. Sci. 41 31

    [35]

    Shamblin S L, Hancock B C, Dupuis Y, Pikal M J 1999 J. Pharm. Sci. 89 417

    [36]

    Apitz D, Johansen P M 2005 J. Appl. Phys. 97 063507

    [37]

    Maglione M, Böhmer R, Loidl A, Höchli U T 1989 Phys. Rev. B 40 11441

    [38]

    Hlinka J, Ostapchuk T, Nuzhnyy D, Petzelt J, Kuzel P, Kadlec C, Vanek P, Ponomareva I, Bellaiche L 2008 Phys. Rev. Lett. 101 167402

    [39]

    Ji K, Namikawa K, Zheng H, Nasu K 2009 Phys. Rev. B 79 144304

  • [1]

    Pike E R, Abbiss J B 1997 Light Scattering and Photon Correlation Spectroscopy (Vol. 40) (Dordrecht: Kluwer Academic Publishers) pp65-67

    [2]

    Lin Y, Yang G C, Wang Y W 2013 Acta Phys. Sin. 62 118702 (in Chinese) [林瑜, 杨光参, 王艳伟 2013 物理学报 62 118702]

    [3]

    Liu X Y, Shen J, Zhu X J, Sun X M, Liu W 2012 Acta Opt. Sin. 32 0629002 (in Chinese) [刘晓艳, 申晋, 朱新军, 孙贤明, 刘伟 2012 光学学报 32 0629002]

    [4]

    Wang L N, Zhao X Y, Zhang L L, Huang Y N 2012 Chin. Phys. B 21 086403

    [5]

    Kleemann W, Licinio P, Woike T, Pankrath R 2001 Phys. Rev. Lett. 86 6014

    [6]

    Elissalde C, Ravez J 2001 J. Mater. Chem. 11 1957

    [7]

    Zhao J Y, Cui B, Chang Z G, Tang Z X 2008 Mater. Rev. 22 21 (in Chinese) [赵俊英, 崔斌, 畅柱国, 唐宗薰 2008 材料导报 22 21]

    [8]

    Chu R Q, Xu Z J, Li G R, Zeng H R, Yu H F, Shao X, Luo H S, Yin Q R 2005 Acta Phys. Sin. 54 935 (in Chinese) [初瑞清, 徐志军, 李国荣, 曾华荣, 余寒峰, 邵鑫, 罗豪甦, 殷庆瑞 2005 物理学报 54 935]

    [9]

    Cochran W 1960 Advan. Phys. 9 387

    [10]

    Harada J, Axe J D, Shirane G 1971 Phys. Rev. B 4 155

    [11]

    Vogt H, Sanjurjo J A, Rossbroich G 1982 Phys. Rev. B 26 5904

    [12]

    Presting H, Sanjurjo J A, Vogt H 1983 Phys. Rev. B 28 6097

    [13]

    Sokoloff J P, Chase L L, Rytz D 1988 Phys. Rev. B 38 597

    [14]

    Comes R, Lambert M, Guinier A 1968 Solid State Commun. 6 715

    [15]

    Zalar B, Laguta V V, Blinc R 2003 Phys. Rev. Lett. 90 037601

    [16]

    Zalar B, Levar A, Seliger J, Blinc R, Laguta V V, Itoh M 2005 Phys. Rev. B 71 064107

    [17]

    Ko J H, Kim T H, Roleder K, Rytz D, Kojima S 2011 Phys. Rev. B 84 094123

    [18]

    Yamada Y, Shirane G, Linz A 1969 Phys. Rev. 177 848

    [19]

    Tai R Z, Namikawa K, Sawada A, Kishimoto M, Tanaka M, Lu P, Nagashima K, Maruyama H, Ando M 2004 Phys. Rev. Lett. 93 087601

    [20]

    Namikawa K, Kishimoto M, Nasu K, Matsushita E, Tai R Z, Sukegawa K, Yamatani H, Hasegawa H, Nishikino M, Tanaka M, Nagashima K 2009 Phys. Rev. Lett. 103 197401

    [21]

    Yan R, Guo Z, Tai R, Xu H, Zhao X, Lin D, Li X, Luo H 2008 Appl. Phys. Lett. 93 192908

    [22]

    Zhang M J, Guo Z, Tai R Z, Luo H S, Namikawa K 2015 Jpn. J. Appl. Phys. 54 042401

    [23]

    Li F, Zhang S J, Li Z R, Xu Z 2012 Prog. Phys. 32 178 (in Chinese) [李飞, 张树君, 李振荣, 徐卓 2012 物理学进展 32 178]

    [24]

    Tyunina M, Levoska J 2001 Phys. Rev. B 63 224102

    [25]

    Smolenskii G A, Isupov V A, Agranovskaya A I, Popov S N 1961 Sov. Phys. Solid State 2 2584

    [26]

    Cross L E 1987 Ferroelectrics 76 241

    [27]

    Viehland D, Jang S J, Cross L E 1990 J. Appl. Phys. 68 2916

    [28]

    Pirc R, Blinc R 1999 Phys. Rev. B 60 13470

    [29]

    Ko J H, Kim D H, Tsukada S, Kojima S 2010 Phys. Rev. B 82 104110

    [30]

    Xu G, Wen J, Stock C, Gehring P M 2008 Nat. Mater. 7 562

    [31]

    Bovtun V, Petzelt J, Porokhonskyy V, Kamba S, Yakimenko Y 2001 J. Eur. Ceram. Soc. 21 1307

    [32]

    Tagantsev A K, Glazounov A E 1998 Phys. Rev. B 57 18

    [33]

    Lambert M, Comes R 1969 Solid State Commun. 7 305

    [34]

    Bokov A A, Ye Z G 2006 J. Mater. Sci. 41 31

    [35]

    Shamblin S L, Hancock B C, Dupuis Y, Pikal M J 1999 J. Pharm. Sci. 89 417

    [36]

    Apitz D, Johansen P M 2005 J. Appl. Phys. 97 063507

    [37]

    Maglione M, Böhmer R, Loidl A, Höchli U T 1989 Phys. Rev. B 40 11441

    [38]

    Hlinka J, Ostapchuk T, Nuzhnyy D, Petzelt J, Kuzel P, Kadlec C, Vanek P, Ponomareva I, Bellaiche L 2008 Phys. Rev. Lett. 101 167402

    [39]

    Ji K, Namikawa K, Zheng H, Nasu K 2009 Phys. Rev. B 79 144304

  • [1] 李明飞, 阎璐, 杨然, 寇军, 刘院省. 日光强度涨落自关联消湍流成像. 物理学报, 2019, 68(9): 094204. doi: 10.7498/aps.68.20182181
    [2] 钱帅, 郭新立, 王家佳, 余新泉, 吴三械, 于金. Cun-1Au (n=2–10)团簇结构、静态极化率及吸收光谱的第一性原理研究. 物理学报, 2013, 62(5): 057803. doi: 10.7498/aps.62.057803
    [3] 王辉, 邝小渝, 毛爱杰. 绿宝石晶体中(CrO6)9-团簇局域极化现象的理论研究. 物理学报, 2010, 59(5): 3450-3454. doi: 10.7498/aps.59.3450
    [4] 赵义. 一维长程关联无序系统的局域性. 物理学报, 2010, 59(1): 532-535. doi: 10.7498/aps.59.532
    [5] 邓超生, 徐 慧, 刘小良, 伍晓赞. 无序度对一维长程关联无序系统中局域化-退局域化转变的影响. 物理学报, 2008, 57(4): 2415-2420. doi: 10.7498/aps.57.2415
    [6] 王雅静, 李洪云, 薛艳丽, 王德华, 林圣路. 强场中NO分子回归谱的长程散射矩阵的理论研究. 物理学报, 2007, 56(11): 6209-6213. doi: 10.7498/aps.56.6209
    [7] 甘琛利, 张彦鹏, 余孝军, 聂志强, 李 岭, 宋建平, 葛 浩, 姜 彤, 张相臣, 卢克清. 基于双光子不对称色锁二阶随机关联的阿秒极化拍研究. 物理学报, 2007, 56(5): 2670-2677. doi: 10.7498/aps.56.2670
    [8] 张艳萍, 张丰收, 蒙克来, 肖国青. Na5, Na6和Na7团簇光学吸收谱的理论研究. 物理学报, 2007, 56(4): 2092-2097. doi: 10.7498/aps.56.2092
    [9] 王 艳, 张树东, 朱湘君, 孔祥和. 乙醚团簇的激光电离质谱及从头计算. 物理学报, 2007, 56(8): 4491-4496. doi: 10.7498/aps.56.4491
    [10] 徐 慧, 邓超生, 刘小良, 马松山, 伍晓赞. 一维长程关联无序系统中的电子态. 物理学报, 2007, 56(3): 1643-1648. doi: 10.7498/aps.56.1643
    [11] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认. 物理学报, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [12] 肖 雪, 李海洋, 罗晓琳, 牛冬梅, 温丽华, 王 宾, 梁 峰, 侯可勇, 张娜珍. CS2团簇增强的激光多价电离现象的质谱研究. 物理学报, 2005, 54(11): 5098-5103. doi: 10.7498/aps.54.5098
    [13] 韩立波, 曹 力, 吴大进, 王 俊. 偏置信号调制下色关联噪声驱动的单模激光的光强相对涨落. 物理学报, 2004, 53(10): 3363-3368. doi: 10.7498/aps.53.3363
    [14] 贾文红, 武海顺. GamPn和GamP-n团簇结构及其光电子能谱的理论研究. 物理学报, 2004, 53(4): 1056-1062. doi: 10.7498/aps.53.1056
    [15] 程元丽, 赵永蓬, 肖亦凡, 夏元钦, 陈建新, 王 骐. 氩团簇高信噪比13—23nm软x射线辐射谱实验观察. 物理学报, 2003, 52(10): 2453-2456. doi: 10.7498/aps.52.2453
    [16] 何春龙, 王 锋, 李家明. 团簇红外吸收谱的理论研究. 物理学报, 2003, 52(8): 1911-1915. doi: 10.7498/aps.52.1911
    [17] 宋建军, 李希国. 量子能谱中的长程关联. 物理学报, 2001, 50(9): 1661-1665. doi: 10.7498/aps.50.1661
    [18] 翟华金, 倪国权, 周汝枋, 王育竹. 负离子铝团簇质谱的奇偶交变及其机理. 物理学报, 1997, 46(9): 1674-1680. doi: 10.7498/aps.46.1674
    [19] 霍裕平, 张澄. 化学反应体系中涨落的时间空间关联(Ⅱ)——非线性系统的临界行为. 物理学报, 1982, 31(3): 359-385. doi: 10.7498/aps.31.359
    [20] 霍裕平. 化学反应体系中涨落的时间空间关联(Ⅰ)——涨落、扩散和波. 物理学报, 1982, 31(3): 355-368. doi: 10.7498/aps.31.355
计量
  • 文章访问数:  2778
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-09
  • 修回日期:  2015-03-03
  • 刊出日期:  2015-07-05

铁电体中极化长程涨落的光子关联谱实验研究

  • 1. 中国科学院上海应用物理研究所, 上海 201204;
  • 2. 中国科学院大学, 北京 100049;
  • 3. 中国科学院上海硅酸盐研究所, 上海 200050
    基金项目: 国家自然科学基金杰出青年基金(批准号: 11225527)、国家自然科学基金重点基金(批准号: 5133002)、国家重点基础研究发展计划(批准号: 2013CB632901)、上海市学术带头人项目(批准号: 13XD1404400)和国家自然科学基金青年基金(批准号: 110311005147)资助的课题.

摘要: 从极化团簇的随机涨落出发, 利用维纳过程模型, 推导了铁电体中极化长程涨落的弛豫规律以及光强自相关函数所可能的表现形式. 阐述了微观极化团簇的弛豫过程与宏观测量弛豫规律之间的联系. 通过对原有氦氖激光光子关联谱实验装置进行改进, 观测了BaTiO3和0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3单晶中极化团簇长程涨落在居里点和立方到四方相变点附近的弛豫过程. 在BaTiO3中发现极化团簇长程涨落在居里点之上4 K存在双弛豫现象, 此现象与其有序无序相变机理相联系. 在Pb(Mg1/3Nb2/3)O3-0.29PbTiO3中发现极化团簇长程涨落在相变点两侧都存在双弛豫现象. 利用推导的理论结果很好地拟合了实验结果并提取了极化团簇长程涨落的弛豫时间. 两种样品中极化团簇长程涨落的弛豫时间都在相变点出现突变, 并呈现临界慢化现象.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回