搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异质结碳纳米管的热整流效率

温家乐 徐志成 古宇 郑冬琴 钟伟荣

引用本文:
Citation:

异质结碳纳米管的热整流效率

温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣

Thermal rectification of heterojunction nanotubes

Wen Jia-Le, Xu Zhi-Cheng, Gu Yu, Zheng Dong-Qin, Zhong Wei-Rong
PDF
导出引用
  • 采用非平衡分子动力学方法, 通过分别控制异质结碳纳米管管径、手性和平均温度的方式研究了异质结碳纳米管的热整流效应. 研究表明, 随着异质结碳纳米管两端几何不对称性的增强, 其热整流效率会随之上升, 而异质结碳纳米管两端的手性的改变和夹角的大小都会对热整流效率产生一定的影响. 热整流效率会随着碳纳米管平均温度的上升而下降. 研究异质结碳纳米管热整流效率对于热二极管、碳纳米散热元器件等潜在应用价值有理论指导作用.
    Using non-equilibrium molecular dynamics method, we have studied the thermal rectification of heterojunction nanotubes (HCNTs). All of these HCNTs, composed of two 4 nm long carbon nanotubes (CNTs), only have a pentagon-heptagon defects pair. Here the positive direction is defined as the direction where the heat flux flows from the large diameter CNTs to the small diameter CNTs. We have found that the thermal rectification depends on the diameter, the chirality and the temperature.#br#Diameter effect: We fix the diameter on one side and changed it on another side, i.e., the left side of the HCNTs is (3, 3) while the right side of the HCNTs is (n, n), in which n changes from 4 to 9. It is found that the thermal rectification efficiency of HCNTs increases with n (also with the diameter difference). If considering the temperature field of (3, 3)-(4, 4) HCNTs, one can find that there exists a region near the HCNT where the temperature changes sharply. This region when the flux is positive is similar to that when the flux is negative. However, if taking into consideration the (3, 3)-(9, 9) HCNTs, we find that the distribution of temperature field shows different behaviors when the directions of the heat flux are different, and the length of this region becomes longer than (3, 3)-(4, 4). It can be explained that the thermal rectification is caused by different temperature distributions in HCNTs.#br#Chirality effect: We keep the chirality unchanged on one side of HCNTs and change the chirality of the other side, namely, the chirality of the left side of HCNTs are (3, 3) and the right side are (9, 9), (11, 7), (13, 4) and (15, 1), all of their diameters are close to 4.1 Å. We can find that the intersection angle between two CNTs decreases when the right side of HCNTs changes from (9, 9) to (15, 1), and the thermal rectification efficiency will be enhanced. It can be explained that the phonon is scattered and absorbed more effectively at the hetero-junction as the intersection angle decreases.#br#Temperature effect: We have constructed a HCNT (3, 3)-(9, 9) and changed its average temperature from 200 to 400 K. Our results show that the thermal rectification efficiency will be weakened with the rise in average temperature because of increasing heat flux in the negative direction.#br#This research may be helpful to the research in nanoscale thermal diodes, thermal logical gates and controlling heat flux.
      通信作者: 郑冬琴, tzhengdq@jnu.edu.cn;wrzhong@hotmail.com ; 钟伟荣, tzhengdq@jnu.edu.cn;wrzhong@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 11004082, 11291240477)、广东省自然科学基金(批准号: 2014 A030313367)和中央高校基本科研业务费专项资金(批准号: 11614341)资助的课题.
      Corresponding author: Zheng Dong-Qin, tzhengdq@jnu.edu.cn;wrzhong@hotmail.com ; Zhong Wei-Rong, tzhengdq@jnu.edu.cn;wrzhong@hotmail.com
    • Funds: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 11004082, 11291240477), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014 A030313367), and the Fundamental Research Funds for Central Universities, JNU, China (Grant No. 11614341).
    [1]

    Berber S, Kwon Y K, Tomanek D 2000 Phys. Rev. Lett. 84 4613

    [2]

    Yang N, Xu X, Zhang G, Li B 2012 AIP Adv. 2 041410

    [3]

    Zhou Q, Meng F, Liu Z, Shi S 2013 J. Nanomater. 2013 12

    [4]

    Balandin A A 2011 Nat. Mater. 10 569

    [5]

    Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503

    [6]

    Wu G, Li B 2007 Phys. Rev.B 76 085424

    [7]

    Noya E G, Srivastava D, Menon M 2009 Phys. Rev.B 79 115432

    [8]

    Yang N, Zhang G, Li B 2009 Phys. Rev. Lett. 95 033107

    [9]

    Li W, Feng Y H, Tang J J, Zhang X X 2013 Acta Phys. Sin. 62 076107 (in Chinese) [李威, 冯妍卉, 唐晶晶, 张欣欣 2013 物理学报 62 076107]

    [10]

    Zhang X H, Li X F, Wang L L, Xu L, Luo K W 2014 Appl. Phys. Lett. 104 103107

    [11]

    Ding X, Ming Y 2014 Chin. Phys. Lett. 31 46601

    [12]

    Zhong W R, Zhang M P, Zheng D Q, Ai B Q 2011 J. Appl. Phys. 109 074317

    [13]

    Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu Y T, Liu Z 2007 Nat. Mater. 6 283

    [14]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [15]

    Terraneo M, Peyrard M, Casati G 2002 Phys. Rev. Lett. 88 094302

    [16]

    Wang L, Li B 2007 Phys. Rev. Lett. 99 177208

    [17]

    Melchor S, Dobado J A 2004 J. Chem. Inf. Comput. Sci. 44 1639

    [18]

    Tersoff J 1989 Phys. Rev.B 39 5566

    [19]

    Chen H, Alan J H McGaughey 2011 ASME/JSME 2011 8th Thermal Engineering Joint Conference Honolulu, March 13-17, T30075

    [20]

    Ai B Q, An M, Zhong W R 2013 J. Chem. Phys. 138 034708

    [21]

    Hu J, Wang Y, Vallabhaneni A, Ruan X, Chen Y P 2011 Appl. Phys. Lett. 99 113101

  • [1]

    Berber S, Kwon Y K, Tomanek D 2000 Phys. Rev. Lett. 84 4613

    [2]

    Yang N, Xu X, Zhang G, Li B 2012 AIP Adv. 2 041410

    [3]

    Zhou Q, Meng F, Liu Z, Shi S 2013 J. Nanomater. 2013 12

    [4]

    Balandin A A 2011 Nat. Mater. 10 569

    [5]

    Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503

    [6]

    Wu G, Li B 2007 Phys. Rev.B 76 085424

    [7]

    Noya E G, Srivastava D, Menon M 2009 Phys. Rev.B 79 115432

    [8]

    Yang N, Zhang G, Li B 2009 Phys. Rev. Lett. 95 033107

    [9]

    Li W, Feng Y H, Tang J J, Zhang X X 2013 Acta Phys. Sin. 62 076107 (in Chinese) [李威, 冯妍卉, 唐晶晶, 张欣欣 2013 物理学报 62 076107]

    [10]

    Zhang X H, Li X F, Wang L L, Xu L, Luo K W 2014 Appl. Phys. Lett. 104 103107

    [11]

    Ding X, Ming Y 2014 Chin. Phys. Lett. 31 46601

    [12]

    Zhong W R, Zhang M P, Zheng D Q, Ai B Q 2011 J. Appl. Phys. 109 074317

    [13]

    Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu Y T, Liu Z 2007 Nat. Mater. 6 283

    [14]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [15]

    Terraneo M, Peyrard M, Casati G 2002 Phys. Rev. Lett. 88 094302

    [16]

    Wang L, Li B 2007 Phys. Rev. Lett. 99 177208

    [17]

    Melchor S, Dobado J A 2004 J. Chem. Inf. Comput. Sci. 44 1639

    [18]

    Tersoff J 1989 Phys. Rev.B 39 5566

    [19]

    Chen H, Alan J H McGaughey 2011 ASME/JSME 2011 8th Thermal Engineering Joint Conference Honolulu, March 13-17, T30075

    [20]

    Ai B Q, An M, Zhong W R 2013 J. Chem. Phys. 138 034708

    [21]

    Hu J, Wang Y, Vallabhaneni A, Ruan X, Chen Y P 2011 Appl. Phys. Lett. 99 113101

  • [1] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应. 物理学报, 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [2] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [3] 刘川川, 郝飞翔, 殷月伟, 李晓光. Pt/BiFeO3/Nb:SrTiO3异质结的光伏效应和光调控整流特性. 物理学报, 2020, 69(12): 127301. doi: 10.7498/aps.69.20200280
    [4] 李丹, 梁君武, 刘华伟, 张学红, 万强, 张清林, 潘安练. CdS/CdS0.48Se0.52轴向异质结纳米线的非对称光波导及双波长激射. 物理学报, 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [5] 张强, 王建元, 罗炳成, 邢辉, 金克新, 陈长乐. La1.3Sr1.7Mn2O7/SrTiO3-Nb异质结的整流和光伏特性. 物理学报, 2016, 65(10): 107301. doi: 10.7498/aps.65.107301
    [6] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [7] 康海燕, 胡辉勇, 王斌, 宣荣喜, 宋建军, 赵晨栋, 许小仓. Si/Ge/Si异质横向SPiN二极管固态等离子体解析模型. 物理学报, 2015, 64(23): 238501. doi: 10.7498/aps.64.238501
    [8] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性. 物理学报, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [9] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性. 物理学报, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [10] 程立锋, 任承, 王萍, 冯帅. 基于异质结界面优化的光子晶体二极管单向传输特性研究. 物理学报, 2014, 63(15): 154213. doi: 10.7498/aps.63.154213
    [11] 杨世海, 金克新, 王晶, 罗炳成, 陈长乐. BaTiO3/p-Si异质结的整流特性和光诱导特性的研究. 物理学报, 2013, 62(14): 147305. doi: 10.7498/aps.62.147305
    [12] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟. 物理学报, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [13] 鞠生宏, 梁新刚. 带孔硅纳米薄膜热整流及声子散射特性研究. 物理学报, 2013, 62(2): 026101. doi: 10.7498/aps.62.026101
    [14] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [15] 赵赓, 程晓曼, 田海军, 杜博群, 梁晓宇, 吴峰. V2O5电极修饰对C60/Pentacene双层异质结场效应晶体管性能的影响. 物理学报, 2012, 61(21): 218502. doi: 10.7498/aps.61.218502
    [16] 张茂平, 钟伟荣, 艾保全. 非对称双链分子结构的热整流效应. 物理学报, 2011, 60(6): 060511. doi: 10.7498/aps.60.060511
    [17] 陈鹏, 金克新, 陈长乐, 谭兴毅. La0.88 Te0.12 MnO3/Si异质结的整流和光伏特性研究. 物理学报, 2011, 60(6): 067303. doi: 10.7498/aps.60.067303
    [18] 李 彤, 李驰平, 张 铭, 王 波, 严 辉. La1-xSrxMnO3/TiO2 (x=0.2, 0.15, 0.04)异质pn结的整流特性. 物理学报, 2007, 56(7): 4132-4136. doi: 10.7498/aps.56.4132
    [19] 刘 鲁, 范广涵, 廖常俊, 曹明德, 陈贵楚, 陈练辉. AlGaInP四元系材料渐变异质结及其在高亮度发光二级管器件中的应用. 物理学报, 2003, 52(5): 1264-1271. doi: 10.7498/aps.52.1264
    [20] 刘 红, 陈将伟. 纳米碳管异质结的结构及其电学性质. 物理学报, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
计量
  • 文章访问数:  4961
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-03
  • 修回日期:  2015-07-03
  • 刊出日期:  2015-11-05

/

返回文章
返回