搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

取向比对椭球气溶胶粒子散射特性的影响

张学海 魏合理 戴聪明 曹亚楠 李学彬

引用本文:
Citation:

取向比对椭球气溶胶粒子散射特性的影响

张学海, 魏合理, 戴聪明, 曹亚楠, 李学彬

Influence of aspect ratio on the light scattering properties of spherical aerosol particles

Zhang Xue-Hai, Wei He-Li, Dai Cong-Ming, Cao Ya-Nan, Li Xue-Bin
PDF
导出引用
  • 利用T矩阵和离散坐标法研究了取向比对椭球粒子散射特性的影响, 计算了小尺度范围内椭球粒子的散射特征参量, 包括消光效率因子、不对称因子、单次散射反照率、散射相矩阵及双向反射函数(BRDF). 结果表明, 椭球粒子的散射特性与取向比密切相关, 粒子取向比会影响散射参量的振荡频率和振幅, 与球形粒子散射参量的相对差异也呈周期振荡趋势. 研究还发现, 某些特殊粒子尺寸的散射参量与粒子取向比基本无关. 在多次散射条件下, 分析不同取向比粒子群的BRDF随反射角和光学厚度的变化特性. 结果显示: 不同取向比粒子群的BRDF随反射角的变化趋势基本一致, 球形粒子群比非球形粒子群的BRDF曲线波动振幅更大; 球形-非球形粒子的BRDF相对差异随光学厚度和取向比的增大而减小, 随入射角的增大而增大.
    The influence of aspect ratio on the light scattering properties of ellipsoidal particles is studied by using T-matrix method and discrete ordinate method in this paper. The light scattering characteristic quantities including extinction efficiency, asymmetrical parameter, single scattering albedo, scattering phase matrix, and bidirectional reflectance distribution function (BRDF) are computed. It is found that light scattering properties of ellipsoidal particles are sensitive to aspect ratio. The aspect ratio can influence the oscillation frequencies and amplitudes of the scattering parameters except some special size parameters. The value of asymmetrical factor could be as large as 0.3 in wave crest value of size parameter while it is no more than 0.1 at the balance location. As for the multiple scattering, the characteristics of BRDF for different aspect ratios in different incident angles and optical thickness values are analyzed, and for a further study, the relative differences of BRDF influenced by aspect ratio, optical thickness, and incident angle are analyzed. The results show that the variation trends of BRDF for the ellipsoidal particles with various aspect ratios are basically the same. However, the curve of BRDF of spherical particles (i.e., with their aspect ratios being 1) is more variable. With the increasing of aerosol optical thickness and aspect ratio, the curves of BRDF at different aspect ratios for ellipsoidal particles tend to a steady and similar value and the relative difference of BRDF decreases. But with the increasing of aerosol optical depth, the relative difference of BRDF increases with the increasing of incident angles, especially in large optical thickness, the value of the relative difference of BRDF can be as large as 15%.
      通信作者: 魏合理, hlwei@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61077081)和国家自然科学基金青年基金(批准号: 41105021) 资助的课题.
      Corresponding author: Wei He-Li, hlwei@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61077081) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 41105021).
    [1]

    Liu L P, Qian Y F 1996 J. Nanjing Univ. (Nat. Sci.) 32 316 (in Chinese) [刘黎平, 钱永甫 1996 南京大学学报 32 316]

    [2]

    Gao T C, Liu L, Li H 2007 J. PLA Univ. Sci. Technol. 8 302 (in Chinese) [高太长, 刘磊, 李浩 2007 解放军理工大学学报(自然科学版) 8 302]

    [3]

    Gong C W, Wei H L, Li X B, Shao S Y, Xu Q S, Chen X H 2009 Acta Opt. Sin. 29 1155 (in Chinese) [宫纯文, 魏合理, 李学彬, 邵士勇, 徐青山, 陈秀红 2009光学学报 29 1155]

    [4]

    Fan M, Chen L F, Li S S, Tao J H, Su L, Zou M M, Zhang Y, Han D 2012 Acta Phys. Sin. 61 204202 (in Chinese) [范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩东2012物理学报 61 204202]

    [5]

    Sun X M, Wang H H, Shen J, Wang S J 2011 Acta Phys. Sin. 60 114216 (in Chinese) [孙贤明, 王海华, 申晋, 王淑君 2011 物理学报 60 114216]

    [6]

    Shao S Y, Huang Y B, Wei H L, Rao R Z 2009 Acta Opt. Sin. 29 108 (in Chinese) [邵士勇, 黄印博, 魏合理, 饶瑞中 2009 光学学报 29 108]

    [7]

    Chen X H, Liu Q, Wei H L 2007 J. Light Scattering 19 283 (in Chinese) [陈秀红, 刘强, 魏合理 2007光散射学报 19 283]

    [8]

    Meland B, Kleiber P D, Grassian V H, Young M A 2010 J. Geophys. Res. 115 D20208

    [9]

    Huang X, Yang P, Kattawar G, Liou K N 2015 J. Quant. Spectrosc. Radiat. Transfer 151 97

    [10]

    Mishchenko M I, Travis L D, Kahn R A, West R A 1997 J. Geophys. Res. 102 16831

    [11]

    Kahnert M, Nousiainen T, Veihelmann B 2005 J. Geophys. Res. 110 D18S13

    [12]

    Kahnert M, Kylling A 2004 J. Geophys. Res. 109 D09203

    [13]

    Waterman P C 1971 Phys. Rev. D 3 825

    [14]

    Mishchenko M I, Travis L D, Mackowski D W 1996 J. Quant. Spectrosc. Radiat. Transfer 55 535

    [15]

    Chandrasekhar S  1950 Radiative Transfer (Oxford: Oxford University Press)

    [16]

    Liou K N 1973 J. Atmos. Sci. 30 1303

    [17]

    Stamnes K, Dale H 1981 J. Atmos. Sci. 38 1696

    [18]

    Liou K N (translated by Guo C L, Zhou S J) 2004 An Introduction to Atmospheric Radiation (Beijing: China Meteorological Press) pp372-377 (in Chinese) [廖国男 著(郭彩丽, 周诗健 译) 2004 大气辐射导论 (北京: 北京气象出版社)第372377页]

    [19]

    Dong Q S 1997 Chin. J. Radio Sci. 12 15 (in Chinese) [董庆生 1997 电波科学学报 12 15]

    [20]

    Diner D J, Bruegge C J, Martonchik J V, Bothwell G W, Danielson E D, Floyd E L, Ford V G, Hovland L E, Jones K L, White M L 1991 Int. J. Imaging Sys. Technol. 3 92

    [21]

    Fu Q 2007 J. Atmos. Sci. 64 4140

    [22]

    Yang P, Fu Q 2009 J. Quant. Spectrosc. Radiat. Transfer 110 1604

    [23]

    Diedenhoven B V, Cairns B, Geogdzhayev I V, Fridlind A M, Ackerman A S, Yang P, Baum B A 2012 Atmos. Meas. Tech. 5 2361

    [24]

    Macke A, Mueller J, Raschke E 1996 J. Atmos. Sci. 53 2813

    [25]

    Breon F M, Goloub P 1998 Geophys. Res. Lett. 25 1879

    [26]

    Duncan D D, Thomas M E 2007 Appl. Opt. 46 6187

    [27]

    Kokhanovsky A A, Rozanov V V 2003 J. Quant. Spectrosc. Radiat. Transfer 77 165

  • [1]

    Liu L P, Qian Y F 1996 J. Nanjing Univ. (Nat. Sci.) 32 316 (in Chinese) [刘黎平, 钱永甫 1996 南京大学学报 32 316]

    [2]

    Gao T C, Liu L, Li H 2007 J. PLA Univ. Sci. Technol. 8 302 (in Chinese) [高太长, 刘磊, 李浩 2007 解放军理工大学学报(自然科学版) 8 302]

    [3]

    Gong C W, Wei H L, Li X B, Shao S Y, Xu Q S, Chen X H 2009 Acta Opt. Sin. 29 1155 (in Chinese) [宫纯文, 魏合理, 李学彬, 邵士勇, 徐青山, 陈秀红 2009光学学报 29 1155]

    [4]

    Fan M, Chen L F, Li S S, Tao J H, Su L, Zou M M, Zhang Y, Han D 2012 Acta Phys. Sin. 61 204202 (in Chinese) [范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩东2012物理学报 61 204202]

    [5]

    Sun X M, Wang H H, Shen J, Wang S J 2011 Acta Phys. Sin. 60 114216 (in Chinese) [孙贤明, 王海华, 申晋, 王淑君 2011 物理学报 60 114216]

    [6]

    Shao S Y, Huang Y B, Wei H L, Rao R Z 2009 Acta Opt. Sin. 29 108 (in Chinese) [邵士勇, 黄印博, 魏合理, 饶瑞中 2009 光学学报 29 108]

    [7]

    Chen X H, Liu Q, Wei H L 2007 J. Light Scattering 19 283 (in Chinese) [陈秀红, 刘强, 魏合理 2007光散射学报 19 283]

    [8]

    Meland B, Kleiber P D, Grassian V H, Young M A 2010 J. Geophys. Res. 115 D20208

    [9]

    Huang X, Yang P, Kattawar G, Liou K N 2015 J. Quant. Spectrosc. Radiat. Transfer 151 97

    [10]

    Mishchenko M I, Travis L D, Kahn R A, West R A 1997 J. Geophys. Res. 102 16831

    [11]

    Kahnert M, Nousiainen T, Veihelmann B 2005 J. Geophys. Res. 110 D18S13

    [12]

    Kahnert M, Kylling A 2004 J. Geophys. Res. 109 D09203

    [13]

    Waterman P C 1971 Phys. Rev. D 3 825

    [14]

    Mishchenko M I, Travis L D, Mackowski D W 1996 J. Quant. Spectrosc. Radiat. Transfer 55 535

    [15]

    Chandrasekhar S  1950 Radiative Transfer (Oxford: Oxford University Press)

    [16]

    Liou K N 1973 J. Atmos. Sci. 30 1303

    [17]

    Stamnes K, Dale H 1981 J. Atmos. Sci. 38 1696

    [18]

    Liou K N (translated by Guo C L, Zhou S J) 2004 An Introduction to Atmospheric Radiation (Beijing: China Meteorological Press) pp372-377 (in Chinese) [廖国男 著(郭彩丽, 周诗健 译) 2004 大气辐射导论 (北京: 北京气象出版社)第372377页]

    [19]

    Dong Q S 1997 Chin. J. Radio Sci. 12 15 (in Chinese) [董庆生 1997 电波科学学报 12 15]

    [20]

    Diner D J, Bruegge C J, Martonchik J V, Bothwell G W, Danielson E D, Floyd E L, Ford V G, Hovland L E, Jones K L, White M L 1991 Int. J. Imaging Sys. Technol. 3 92

    [21]

    Fu Q 2007 J. Atmos. Sci. 64 4140

    [22]

    Yang P, Fu Q 2009 J. Quant. Spectrosc. Radiat. Transfer 110 1604

    [23]

    Diedenhoven B V, Cairns B, Geogdzhayev I V, Fridlind A M, Ackerman A S, Yang P, Baum B A 2012 Atmos. Meas. Tech. 5 2361

    [24]

    Macke A, Mueller J, Raschke E 1996 J. Atmos. Sci. 53 2813

    [25]

    Breon F M, Goloub P 1998 Geophys. Res. Lett. 25 1879

    [26]

    Duncan D D, Thomas M E 2007 Appl. Opt. 46 6187

    [27]

    Kokhanovsky A A, Rozanov V V 2003 J. Quant. Spectrosc. Radiat. Transfer 77 165

  • [1] 张肃, 彭杰, 战俊彤, 付强, 段锦, 姜会林. 非球形椭球粒子参数变化对光偏振特性的影响. 物理学报, 2016, 65(6): 064205. doi: 10.7498/aps.65.064205
    [2] 崔帅, 张晓娟, 方广有. 基于递归T矩阵的离散随机散射体散射特性研究. 物理学报, 2014, 63(15): 154202. doi: 10.7498/aps.63.154202
    [3] 孙兰君, 田兆硕, 任秀云, 张延超, 付石友. 溢油海水双向反射分布函数的建模及仿真. 物理学报, 2014, 63(13): 134211. doi: 10.7498/aps.63.134211
    [4] 孙悟, 邓小玖, 李耀东, 张永明, 郑赛晶, 王维妙. 双波长抗干扰光电感烟探测机理. 物理学报, 2013, 62(3): 030201. doi: 10.7498/aps.62.030201
    [5] 米利, 周宏伟, 孙祉伟, 刘丽霞, 徐升华. 光散射聚集速率测定中T矩阵方法的应用. 物理学报, 2013, 62(13): 134704. doi: 10.7498/aps.62.134704
    [6] 欧军, 江月松, 邵宇伟, 屈晓声, 华厚强, 闻东海. 均匀椭球粒子对拉盖尔-高斯光束的散射特性研究. 物理学报, 2013, 62(11): 114201. doi: 10.7498/aps.62.114201
    [7] 张峰, 马雷鸣, 沈钟平, 张华, 孙靖, 杨寅. 一种计算非均质大气双向反射比的新方法. 物理学报, 2012, 61(18): 184212. doi: 10.7498/aps.61.184212
    [8] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [9] 范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩冬. 非球形气溶胶粒子短波红外散射特性研究. 物理学报, 2012, 61(20): 204202. doi: 10.7498/aps.61.204202
    [10] 孙贤明, 王海华, 申晋, 王淑君. 随机取向双层椭球粒子偏振散射特性研究. 物理学报, 2011, 60(11): 114216. doi: 10.7498/aps.60.114216
    [11] 袁艳, 孙成明, 张修宝. 空间目标表面材料光谱双向反射分布函数测量与建模. 物理学报, 2010, 59(3): 2097-2103. doi: 10.7498/aps.59.2097
    [12] 王庆美, 任廷琦, 朱吉亮. GaH(D,T)分子基态结构与势能函数. 物理学报, 2009, 58(8): 5270-5273. doi: 10.7498/aps.58.5270
    [13] 王庆美, 任廷琦, 朱吉亮. BiH(D,T)分子基态结构与势能函数. 物理学报, 2009, 58(8): 5266-5269. doi: 10.7498/aps.58.5266
    [14] 孙贤明, 申晋, 魏佩瑜. 含有密集随机分布内核的椭球粒子光散射特性研究. 物理学报, 2009, 58(9): 6222-6226. doi: 10.7498/aps.58.6222
    [15] 胡明亮, 惠小强. 计算自旋-s算子幺正演化矩阵ds(t)的新方法及其应用. 物理学报, 2008, 57(6): 3319-3323. doi: 10.7498/aps.57.3319
    [16] 袁乃荣, 邬鸿彦, 李 铮, 邱庆春. T1uhg Jahn-Teller系统中的频率约化矩阵. 物理学报, 2000, 49(9): 1769-1777. doi: 10.7498/aps.49.1769
    [17] 韩一平, 吴振森. 椭球粒子电磁散射的边界条件的讨论. 物理学报, 2000, 49(1): 57-60. doi: 10.7498/aps.49.57
    [18] 林琨智. 无反射势阱中粒子运动的双波函数描述. 物理学报, 1996, 45(3): 360-369. doi: 10.7498/aps.45.360
    [19] 陈济舟, 王俊桥, 韩甫田. 取向对径向分布函数的影响. 物理学报, 1994, 43(7): 1105-1110. doi: 10.7498/aps.43.1105
    [20] 朱保如. 不稳定粒子η的衰变分支比R((η→ππγ)/(η→3π)). 物理学报, 1965, 21(1): 92-102. doi: 10.7498/aps.21.92
计量
  • 文章访问数:  3340
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-31
  • 修回日期:  2015-06-25
  • 刊出日期:  2015-11-05

取向比对椭球气溶胶粒子散射特性的影响

  • 1. 中国科学院安徽光学精密机械研究所, 中国科学院大气成分与光学重点实验室, 合肥 230031;
  • 2. 中国科学院大学, 北京 100039;
  • 3. 中国科学技术大学环境科学与光电技术学院, 合肥 230031
  • 通信作者: 魏合理, hlwei@aiofm.ac.cn
    基金项目: 国家自然科学基金(批准号: 61077081)和国家自然科学基金青年基金(批准号: 41105021) 资助的课题.

摘要: 利用T矩阵和离散坐标法研究了取向比对椭球粒子散射特性的影响, 计算了小尺度范围内椭球粒子的散射特征参量, 包括消光效率因子、不对称因子、单次散射反照率、散射相矩阵及双向反射函数(BRDF). 结果表明, 椭球粒子的散射特性与取向比密切相关, 粒子取向比会影响散射参量的振荡频率和振幅, 与球形粒子散射参量的相对差异也呈周期振荡趋势. 研究还发现, 某些特殊粒子尺寸的散射参量与粒子取向比基本无关. 在多次散射条件下, 分析不同取向比粒子群的BRDF随反射角和光学厚度的变化特性. 结果显示: 不同取向比粒子群的BRDF随反射角的变化趋势基本一致, 球形粒子群比非球形粒子群的BRDF曲线波动振幅更大; 球形-非球形粒子的BRDF相对差异随光学厚度和取向比的增大而减小, 随入射角的增大而增大.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回