搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电阻率与强度性能的关联及铜合金性能分区

李鸿明 董闯 王清 李晓娜 赵亚军 周大雨

引用本文:
Citation:

电阻率与强度性能的关联及铜合金性能分区

李鸿明, 董闯, 王清, 李晓娜, 赵亚军, 周大雨

Correlation between electrical resistivity and strength of copper alloy and material classification

Li Hong-Ming, Dong Chuang, Wang Qing, Li Xiao-Na, Zhao Ya-Jun, Zhou Da-Yu
PDF
导出引用
  • 铜合金以低电阻率为特征,由于电阻率与强度存在着共同的微观结构机理,两者往往协同变化,而导致难以对合金进行性能的全面评估和选材.本文以Cu-Ni-Mo合金作为研究对象,以团簇结构[Mo1-Ni12]构建固溶体的近程序结构模型,解析了电阻率和强度依赖于成分的定量变化规律,并定义了拉伸强度/电阻率的值为代表合金本质特性的“强阻比”,得到了完全固溶态Cu-Ni-Mo合金的强阻比为7×108 MPa/Ω·m,完全析出态的强阻比为(310–490)×108 MPa/Ω·m.进而应用强阻比对常用铜合金进行了性能分区,给出铜合金材料选材的依据,得出了基于Cu-(Cr,Zr,Mg,Ag,Cd)等二元基础体系的铜合金适用于高强高导应用,而基于Cu-(Be,Ni,Sn,Fe,Zn,Ti,Al)等为基础二元体系的铜合金不能实现高强高导.该强阻比为310的特征性能分界线的发现为合金性能的全面评估提供了量化依据,可指导高强高导铜合金的选材和研发.
    Low electrical resistivity and high strength are a basic requirements for copper alloys.However,it has been widely known that these two properties are contradictory to each other:high electrical resistivity means extensive electron scattering by obstacles in the alloy,which in turn blocks dislocation movement to enhance mechanical strength.That is to say,any increase in strength necessarily brings about an increase in electrical resistivity.Essentially,strength and electrical resistivity are coupled in metal alloy as both are issued from a similar microstructural mechanism. That is why it is generally difficult to evaluate these alloys comprehensively and to select the materials appropriately.
    The present work addresses this fundamental problem by analyzing the dependence of hardness (in relation to strength) and electrical resistivity on solute content for deliberately designed ternary[Moy/(y+ 12)Ni12/(y+12)]xCu100-x alloys (at.%),where x=0.3-15.0 is the total solute content,y=0.5-6.0 is the ratio between Mo and Ni.The Mo-centered and Ni-nearest-neighbored[Mo1-Ni12]cluster structure are used to construct a short-range-order structure model of solid solution.The cluster[Mo1-Ni12]in solution enhances the strength,without increasing the electrical resistivity much,for the solutes are organized into cluster-type local atomic aggregates that reduce the dislocation mobility more strongly than electron scattering.The short-range-order structure has an essentially identical function for strength and electrical resistivity. In this solution state,both hardness and resistivity increase linearly with solute content increasing.When the solute constituents do not meet the requirement for ideal solution,i.e.,Mo-Ni ratio exceeds 1/12,the maximum value that the cluster[Mo1-Ni12]can accommodate,the solid solution should be destabilized and precipitation should occur,such as Mo precipitation in this case.The deviation from the linear change of resistivity and strength with solute content are caused by different alloy states,that is,solid solution and precipitation,which contribute to the resistivity and strength differently.Here we define a new term,the ratio of residual tensile strength to residual electrical resistivity,i.e.the “strength/resistivity ratio” in short,which represents an essential property of the alloy system.This ratio is 7×108 MPa/Ω· m) for the Cu-Ni-Mo alloy in complete solid solution state,and it is in a range of (310-490) 108 MPa/Ω·m) for the Cu-Ni-Mo alloys in a fully precipitation state (i.e.,most of Mo solute atoms precipitate out of the Cu matrix).
    Finally this new parameter is applied to the classification of common copper industrial alloys for the purpose of laying the basis for material selection.It is found that the strength/resistivity ratio of 310 effectively marks the boundary between the fully precipitated state and precipitation plus solution state.Using this criterion,it is concluded that alloys based on Cu-(Cr,Zr,Mg,Ag,Cd) are suitable for high-strength and high-conductivity applications.However,alloys based on binary systems Cu-(Be,Ni,Sn,Fe,Zn,Ti,Al) cannot realize the same purpose.The finding of the line dividing the characteristic properties of alloy having a strength-resistivity-ratio of 310 provides a key quantitative basis for comprehensively evaluating the alloy performance,which can effectively guide material selection and development of high strength and high conductivity copper alloys.
    [1]

    Lu K, Lu L, Suresh S 2009 Science 324 349

    [2]

    Motohisa M 1990 J. Japan CU and Brass Research Association 29 18

    [3]

    Motohisa M 1998 J. Japan Copper and Brass Research Association 27 93

    [4]

    Li H M, Zhao Y J, Li X N, Zhou D Y, Dong C 2016 J. Phys. D: Appl. Phys. 49 035306

    [5]

    Li H M, Zhou D Y, Dong C 2018 J. Electron. Mater. DOI10.1007/s11664-018-6709-4

    [6]

    Matthiessen A, Vogt C 1864 Phil. Trans. R. Soc. Lond. 154 167

    [7]

    Zhang P, Li S X, Zhang Z F 2011 Mater. Sci. Eng. A 529 62

    [8]

    Metals A S f, Davis J R 2009 ASM Handbook. 2 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (William Park Woodside: American Society for Metals)

    [9]

    Li X N, Liu L J, Zhang X Y, Chu J P, Wang Q, Dong C 2012 J. Electron. Mater. 41 3447

    [10]

    Jin Y, Adachi K, Takeuchi T, Suzuki H G 1998 J. Mater. Sci. 33 1333

    [11]

    Kin S H, Lee D N 2002 Metall. Mater. Trans. 33 1605

    [12]

    Singh R P, Lawley A, Friedman S, Murty Y V 1991 Mater. Sci. Eng. A 145 243

    [13]

    Ning Y T, Zhang X H, Wu Y J 2007 Trans. Nonferr. Met. Soc. China 17 378

    [14]

    Song J S, Hong S I, Park Y G 2005 J. Alloys Compd. 388 69

    [15]

    Gao H Y, Wang J, Sun B D 2009 J. Alloys Compd. 469 580

    [16]

    Wu Z W, Chen Y, Meng L 2009 J. Alloys Compd. 481 236

    [17]

    Verhoeven J D, Chueh S C, Gibson E D 1989 J. Mater. Sci. 24 1748

    [18]

    Hong S I, Hill M A 1998 Acta Metall. 46 4111

    [19]

    Renaud C V, Gregory E, Wong J 1986 Adv. Cryog. Eng. Mater. 32 443

    [20]

    Mattissen D, Raabe D, Heringhaus F 1999 Acta Mater. 47 1627

    [21]

    Tenwick M J, Davies H A 1988 Mater. Sci. Eng. 97 543

    [22]

    Nagarjuna S, Balasubramanian K, Sarma D S 1999 J. Mater. Sci. 34 2929

    [23]

    Nagarjuna S, Sharma K K, Sudhakar I, Sarma D S 2001 Mater. Sci. Eng. A 313 251

  • [1]

    Lu K, Lu L, Suresh S 2009 Science 324 349

    [2]

    Motohisa M 1990 J. Japan CU and Brass Research Association 29 18

    [3]

    Motohisa M 1998 J. Japan Copper and Brass Research Association 27 93

    [4]

    Li H M, Zhao Y J, Li X N, Zhou D Y, Dong C 2016 J. Phys. D: Appl. Phys. 49 035306

    [5]

    Li H M, Zhou D Y, Dong C 2018 J. Electron. Mater. DOI10.1007/s11664-018-6709-4

    [6]

    Matthiessen A, Vogt C 1864 Phil. Trans. R. Soc. Lond. 154 167

    [7]

    Zhang P, Li S X, Zhang Z F 2011 Mater. Sci. Eng. A 529 62

    [8]

    Metals A S f, Davis J R 2009 ASM Handbook. 2 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (William Park Woodside: American Society for Metals)

    [9]

    Li X N, Liu L J, Zhang X Y, Chu J P, Wang Q, Dong C 2012 J. Electron. Mater. 41 3447

    [10]

    Jin Y, Adachi K, Takeuchi T, Suzuki H G 1998 J. Mater. Sci. 33 1333

    [11]

    Kin S H, Lee D N 2002 Metall. Mater. Trans. 33 1605

    [12]

    Singh R P, Lawley A, Friedman S, Murty Y V 1991 Mater. Sci. Eng. A 145 243

    [13]

    Ning Y T, Zhang X H, Wu Y J 2007 Trans. Nonferr. Met. Soc. China 17 378

    [14]

    Song J S, Hong S I, Park Y G 2005 J. Alloys Compd. 388 69

    [15]

    Gao H Y, Wang J, Sun B D 2009 J. Alloys Compd. 469 580

    [16]

    Wu Z W, Chen Y, Meng L 2009 J. Alloys Compd. 481 236

    [17]

    Verhoeven J D, Chueh S C, Gibson E D 1989 J. Mater. Sci. 24 1748

    [18]

    Hong S I, Hill M A 1998 Acta Metall. 46 4111

    [19]

    Renaud C V, Gregory E, Wong J 1986 Adv. Cryog. Eng. Mater. 32 443

    [20]

    Mattissen D, Raabe D, Heringhaus F 1999 Acta Mater. 47 1627

    [21]

    Tenwick M J, Davies H A 1988 Mater. Sci. Eng. 97 543

    [22]

    Nagarjuna S, Balasubramanian K, Sarma D S 1999 J. Mater. Sci. 34 2929

    [23]

    Nagarjuna S, Sharma K K, Sudhakar I, Sarma D S 2001 Mater. Sci. Eng. A 313 251

  • [1] 伍友成, 刘高旻, 戴文峰, 高志鹏, 贺红亮, 郝世荣, 邓建军. 冲击波作用下Pb(Zr0.95Ti0.05)O3铁电陶瓷去极化后电阻率动态特性. 物理学报, 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [2] 李蕊, 左小伟, 王恩刚. 时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度. 物理学报, 2017, 66(2): 027401. doi: 10.7498/aps.66.027401
    [3] 李晓娜, 郑月红, 李震, 王苗, 张坤, 董闯. 基于团簇模型设计的Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe) 合金抗高温氧化研究. 物理学报, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [4] 刘雅洁. 直接利用磁场和温度精确确定磁性材料La0.67Ca0.33MnO3和Pr0.7Sr0.3MnO3的电阻率. 物理学报, 2013, 62(1): 017601. doi: 10.7498/aps.62.017601
    [5] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜. 物理学报, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [6] 谌岩, 刘琳, 刘建华, 张瑞军. 高压处理对Cu75.15Al24.85合金组织与电阻率的影响. 物理学报, 2012, 61(17): 176103. doi: 10.7498/aps.61.176103
    [7] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [8] 张明晓, 田学雷, 郭风祥. 电磁感应式液固态金属电阻率定性测量装置及应用. 物理学报, 2009, 58(9): 6080-6085. doi: 10.7498/aps.58.6080
    [9] 樊飞, 班春燕, 王洋, 巴启先, 崔建忠. 普通铸造和低频电磁铸造7050铝合金电阻率-温度特性的研究. 物理学报, 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [10] 蒋冬冬, 杜金梅, 谷 岩, 冯玉军. 冲击波加载下PZT 95/5铁电陶瓷的电阻率研究. 物理学报, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [11] 别少伟, 江建军, 马 强, 杜 刚, 袁 林, 邸永江, 冯则坤, 何华辉. 高电阻率多层纳米颗粒膜软磁特性及微波磁导率. 物理学报, 2008, 57(4): 2514-2518. doi: 10.7498/aps.57.2514
    [12] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [13] 周 昀, 龙云泽, 陈兆甲, 张志明, 万梅香. 水和乙醇对纳米管结构聚苯胺电阻率的影响. 物理学报, 2005, 54(1): 228-232. doi: 10.7498/aps.54.228
    [14] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [15] 汪 渊, 徐可为. Cu-W薄膜表面形貌的分形表征与电阻率. 物理学报, 2004, 53(3): 900-904. doi: 10.7498/aps.53.900
    [16] 龙云泽, 陈兆甲, 张志明, 万梅香, 郑 萍, 王楠林, 贺朝会, 耿 斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 纳米管结构聚苯胺的电阻率和磁化率. 物理学报, 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
    [17] 杨宏顺, 李鹏程, 柴一晟, 余旻, 李志权, 杨东升, 章良, 王喻宏, 李明德, 曹烈兆, 龙云泽, 陈兆甲. La2CuO4掺锌样品的低温电阻率与热导率研究. 物理学报, 2002, 51(3): 679-684. doi: 10.7498/aps.51.679
    [18] 杨宏顺, 余旻, 李世燕, 李鹏程, 柴一晟, 章良, 陈仙辉, 曹烈兆. 新型超导体MgB2的热电势和电阻率研究. 物理学报, 2001, 50(6): 1197-1200. doi: 10.7498/aps.50.1197
    [19] 李慧玲, 阮可青, 李世燕, 莫维勤, 樊荣, 罗习刚, 陈仙辉, 曹烈兆. MgB2和Mg0.93Li0.07B2的电阻率与霍尔效应研究. 物理学报, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [20] 王强, 陆坤权, 李言祥. 液态InSb电阻率和热电势与温度的关系. 物理学报, 2001, 50(7): 1355-1358. doi: 10.7498/aps.50.1355
计量
  • 文章访问数:  3163
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-07
  • 修回日期:  2018-11-18
  • 刊出日期:  2019-01-05

电阻率与强度性能的关联及铜合金性能分区

  • 1. 大连理工大学, 材料改性重点实验室, 大连 116024;
  • 2. 内蒙古民族大学, 物理与电子信息学院, 通辽 028000

摘要: 铜合金以低电阻率为特征,由于电阻率与强度存在着共同的微观结构机理,两者往往协同变化,而导致难以对合金进行性能的全面评估和选材.本文以Cu-Ni-Mo合金作为研究对象,以团簇结构[Mo1-Ni12]构建固溶体的近程序结构模型,解析了电阻率和强度依赖于成分的定量变化规律,并定义了拉伸强度/电阻率的值为代表合金本质特性的“强阻比”,得到了完全固溶态Cu-Ni-Mo合金的强阻比为7×108 MPa/Ω·m,完全析出态的强阻比为(310–490)×108 MPa/Ω·m.进而应用强阻比对常用铜合金进行了性能分区,给出铜合金材料选材的依据,得出了基于Cu-(Cr,Zr,Mg,Ag,Cd)等二元基础体系的铜合金适用于高强高导应用,而基于Cu-(Be,Ni,Sn,Fe,Zn,Ti,Al)等为基础二元体系的铜合金不能实现高强高导.该强阻比为310的特征性能分界线的发现为合金性能的全面评估提供了量化依据,可指导高强高导铜合金的选材和研发.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回