搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

像散正弦-高斯光束的分数傅里叶变换与椭圆空心光束产生

朱洁 朱开成

引用本文:
Citation:

像散正弦-高斯光束的分数傅里叶变换与椭圆空心光束产生

朱洁, 朱开成

Fractional Fourier transform of astigmatic sine-Gaussian beams and generation of dark hollow light beams with elliptic geometry

Zhu Jie, Zhu Kai-Cheng
PDF
导出引用
  • 基于分数傅里叶变换(FrFT)关系,推导了像散正弦-高斯光束场分布的解析表达式,利用所得结果和数值方法研究了像散正弦-高斯光束在FrFT平面上的光强分布与位相特性.理论和数值分析结果都表明:像散的存在使得正弦-高斯光束在FrFT过程中从初始输入具有边缘位错的多斑花样转换为具有涡旋的暗空心椭圆花样,且其拓扑荷指数为一,而在这种转换中像散起着关键控制作用.此外,适当选择光束参数与FrFT系统结构参数,暗空心椭圆花样的长轴可以是短轴的百余倍,因此利用这一方案可获得相当细长的暗空心椭圆光束.
    In this work, we develop a novel method of creating dark hollow beam with vortex by converting a sine-Gaussian beam (SeGB) with edge-dislocation and astigmatism through using fractional Fourier transform (FrFT) optical system. On the basis of the definition of the FrFT, an analytical transformation formula is derived for an astigmatic SeGB passing through such a transform system. By use of the derived formulae, the changes of the intensity distribution and the corresponding phase properties associated with the transforming astigmatic SeGBs are analytically discussed in detail. It is found that for an input SeGB without astigmatism, there is still a dark line or an edge dislocation associated with the intensity distribution of the FrFT beam along the initial dislocation line, similar to that of the input SeGB. However, when the input SeGB astigmatically passes through an FrFT optical system, the dark line of the intensity distribution of the input SeGB can be converted into a solitary zero point, or in other words, a dark hollow beam with a single-charge vortex can be produced by SeGB with an edge dislocation. The results reveal that the astigmatism plays a critical role in transforming a SeGB into a dark hollow one through the FrFT optical system. Furthermore, some numerical calculation results based on the derived formula are presented and discussed graphically. It is shown that for appropriate beam parameters and carefully adjusting the transform angle of FrFT, dark hollow beams with single-charge vortex and elongated elliptic geometry can be realized with astigmatic SeGBs. The influences of the beam parameters and the transform angle of FrFT optical system on the generation of perfect dark hollow beams are also investigated. The results demonstrate that the linear eccentricity of the dark hollow beam, which is roughly defined as the ratio of semi-minor axis to semi-major one of the intensity pattern, mainly depends on the Fresnel number. And the optimal linear eccentricity may be relatively large under carefully selecting the beam and optical system parameters. Moreover, optimal parameter values corresponding to perfect dark hollow beam configurations which can be experimentally accessed are presented. As is well known, there are two types of pure phase defects or dislocations in the optical fields:one is screw dislocation or vortex and the other is edge-dislocation. Due to their important applications, the propagation dynamics of optical vortices or edge dislocations are extensively studied both theoretically and experimentally. The vortex-edge dislocation interaction is investigated in detail. However, there are fewer reports on the direct conversion between a single edge dislocation and a vortex. Therefore, the results obtained in this paper represent a significant step forward in understanding the transformation dynamics between beams with pure edge dislocation and vortex, and also opens possibilities for their potential applications, e.g., in generating dark hollow beams with elliptic geometry using FrFT systems.
      通信作者: 朱开成, kczhu058@csu.edu.cn
    • 基金项目: 贵州理工学院高层次人才引进科研启动费资助的课题.
      Corresponding author: Zhu Kai-Cheng, kczhu058@csu.edu.cn
    • Funds: Project supported by the High Level Introduction of Talent Research Start-up Fund of Guizhou Institute of Technology, China.
    [1]

    Namias V 1980 IMA J. Appl. Math. 25 241

    [2]

    Ozaktas H, Kutay M, Zalevsky Z 2001 The Fractional Fourier Transform with Applications in Optics and Signal Processing (New Jersey:Wiley) pp 319-386

    [3]

    Lohmann A W 1993 J. Opt. Soc. Am. A 10 2181

    [4]

    Yin J, Gao W, Zhu Y 2003 Prog. Opt. 45 119

    [5]

    Ottl A, Ritter S, Kohl M, Esslinger T 2005 Phys. Rev. Lett. 95 090404

    [6]

    Volyar A, Shvedov V, Fadeyeva T, Desyatnikov A S, Neshev D N, Krolikowski W, Kivshar Y S 2006 Opt. Express 14 3724

    [7]

    Xie Q, Zhao D 2007 Opt. Commun. 275 394

    [8]

    Liu Z, Dai J, Zhao X, Sun X, Liu S, Ahmad M A 2009 Opt. Lasers Eng. 47 1250

    [9]

    Nie Y, Li X, Qi J, Ma H, Liao J, Yang J, Hu W 2012 Opt. Laser Technol. 44 384

    [10]

    Lu S, You K, Chen L, Wang Y, Zhang D Y 2013 Optik 124 3301

    [11]

    Zhu S, Zhao C, Chen Y, Cai Y 2013 Optik 124 5271

    [12]

    Wei C, Lu X, Wu G, Wang F, Cai Y 2014 Appl. Phys. B 115 55

    [13]

    Chakraborty R, Ghosh A 2006 J. Opt. Soc. Am. A 23 2278

    [14]

    Zhao C, Lu X, Wang L, Chen H 2008 Opt. Laser Technol. 40 575

    [15]

    Tang H Q, Zhu K C 2013 Opt. Laser Technol. 54 68

    [16]

    Zhu K C, Tang H Q, Tang Y, Xia H 2014 Opt. Laser Technol. 64 11

    [17]

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210 (in Chinese)[朱开成, 唐慧琴, 郑小娟, 唐英2014物理学报63 104210]

    [18]

    Anguianomorales M, Salaspeimbert D P, Trujilloschiaffino G, Corralmartínez L F, Garduñowilches I 2015 Opt. Quant. Electron. 47 2983

    [19]

    Casperson L W, Hall D G, Tovar A A 1997 J. Opt. Soc. Am. A 14 3341

    [20]

    Casperson L W, Tovar A A 1998 J. Opt. Soc. Am. A 15 954

    [21]

    Wang X Q, L B D 2002 Acta Phys. Sin. 51 247 (in Chinese)[王喜庆, 吕百达2002物理学报51 247]

    [22]

    Eyyuboğlu H T, Baykal Y 2005 J. Opt. Soc. Am. A 22 2709

    [23]

    Eyyuboğlu H T 2007 Optik 118 289

    [24]

    Lu Z 2007 Chin. Phys. 16 1320

    [25]

    Ding P, Qu J, Meng K, Cui Z 2008 Opt. Commun. 281 395

    [26]

    Li J H, Yang A L, L B D 2009 Acta Phys. Sin. 58 674 (in Chinese)[李晋红, 杨爱林, 吕百达2009物理学报58 674]

    [27]

    Yahya B 2012 J. Opt. 14 075707

    [28]

    Xu Y 2014 Optik 125 3465

    [29]

    Huang Y, Wang F, Gao Z, Zhang B 2015 Opt. Express 23 1088

    [30]

    Gerçekcioğlu H, Baykal Y 2014 Opt. Commun. 320 1

    [31]

    Zhao D, Mao H, Liu H, Wang S, Jing F, Wei X 2004 Opt. Commun. 236 225

    [32]

    Du X, Zhao D 2007 Phys. Lett. A 366 271

    [33]

    Zhou G Q, Chu X X 2009 Opt. Express 17 10529

    [34]

    Zhou G Q 2009 J. Mod. Opt. 56 886

    [35]

    Chen S, Zhang T, Feng X 2009 Opt. Commun. 282 1083

    [36]

    Serna J, Nemeş G 1993 Opt. Lett. 18 1774

    [37]

    Gregor I, Enderlein J 2005 Opt. Lett. 30 2527

    [38]

    Zheng C 2006 Phys. Lett. A 355 156

    [39]

    Zheng C 2009 Optik 120 274

    [40]

    Lu X, Wei C, Liu L, Wu G, Wang F, Cai Y 2014 Opt. Laser Technol. 56 92

    [41]

    Wang X, Liu Z, Zhao D 2014 Opt. Eng. 53 086112

    [42]

    Tang B, Jiang S, Jiang C, Zhu H 2014 Opt. Laser Technol. 59 116

  • [1]

    Namias V 1980 IMA J. Appl. Math. 25 241

    [2]

    Ozaktas H, Kutay M, Zalevsky Z 2001 The Fractional Fourier Transform with Applications in Optics and Signal Processing (New Jersey:Wiley) pp 319-386

    [3]

    Lohmann A W 1993 J. Opt. Soc. Am. A 10 2181

    [4]

    Yin J, Gao W, Zhu Y 2003 Prog. Opt. 45 119

    [5]

    Ottl A, Ritter S, Kohl M, Esslinger T 2005 Phys. Rev. Lett. 95 090404

    [6]

    Volyar A, Shvedov V, Fadeyeva T, Desyatnikov A S, Neshev D N, Krolikowski W, Kivshar Y S 2006 Opt. Express 14 3724

    [7]

    Xie Q, Zhao D 2007 Opt. Commun. 275 394

    [8]

    Liu Z, Dai J, Zhao X, Sun X, Liu S, Ahmad M A 2009 Opt. Lasers Eng. 47 1250

    [9]

    Nie Y, Li X, Qi J, Ma H, Liao J, Yang J, Hu W 2012 Opt. Laser Technol. 44 384

    [10]

    Lu S, You K, Chen L, Wang Y, Zhang D Y 2013 Optik 124 3301

    [11]

    Zhu S, Zhao C, Chen Y, Cai Y 2013 Optik 124 5271

    [12]

    Wei C, Lu X, Wu G, Wang F, Cai Y 2014 Appl. Phys. B 115 55

    [13]

    Chakraborty R, Ghosh A 2006 J. Opt. Soc. Am. A 23 2278

    [14]

    Zhao C, Lu X, Wang L, Chen H 2008 Opt. Laser Technol. 40 575

    [15]

    Tang H Q, Zhu K C 2013 Opt. Laser Technol. 54 68

    [16]

    Zhu K C, Tang H Q, Tang Y, Xia H 2014 Opt. Laser Technol. 64 11

    [17]

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210 (in Chinese)[朱开成, 唐慧琴, 郑小娟, 唐英2014物理学报63 104210]

    [18]

    Anguianomorales M, Salaspeimbert D P, Trujilloschiaffino G, Corralmartínez L F, Garduñowilches I 2015 Opt. Quant. Electron. 47 2983

    [19]

    Casperson L W, Hall D G, Tovar A A 1997 J. Opt. Soc. Am. A 14 3341

    [20]

    Casperson L W, Tovar A A 1998 J. Opt. Soc. Am. A 15 954

    [21]

    Wang X Q, L B D 2002 Acta Phys. Sin. 51 247 (in Chinese)[王喜庆, 吕百达2002物理学报51 247]

    [22]

    Eyyuboğlu H T, Baykal Y 2005 J. Opt. Soc. Am. A 22 2709

    [23]

    Eyyuboğlu H T 2007 Optik 118 289

    [24]

    Lu Z 2007 Chin. Phys. 16 1320

    [25]

    Ding P, Qu J, Meng K, Cui Z 2008 Opt. Commun. 281 395

    [26]

    Li J H, Yang A L, L B D 2009 Acta Phys. Sin. 58 674 (in Chinese)[李晋红, 杨爱林, 吕百达2009物理学报58 674]

    [27]

    Yahya B 2012 J. Opt. 14 075707

    [28]

    Xu Y 2014 Optik 125 3465

    [29]

    Huang Y, Wang F, Gao Z, Zhang B 2015 Opt. Express 23 1088

    [30]

    Gerçekcioğlu H, Baykal Y 2014 Opt. Commun. 320 1

    [31]

    Zhao D, Mao H, Liu H, Wang S, Jing F, Wei X 2004 Opt. Commun. 236 225

    [32]

    Du X, Zhao D 2007 Phys. Lett. A 366 271

    [33]

    Zhou G Q, Chu X X 2009 Opt. Express 17 10529

    [34]

    Zhou G Q 2009 J. Mod. Opt. 56 886

    [35]

    Chen S, Zhang T, Feng X 2009 Opt. Commun. 282 1083

    [36]

    Serna J, Nemeş G 1993 Opt. Lett. 18 1774

    [37]

    Gregor I, Enderlein J 2005 Opt. Lett. 30 2527

    [38]

    Zheng C 2006 Phys. Lett. A 355 156

    [39]

    Zheng C 2009 Optik 120 274

    [40]

    Lu X, Wei C, Liu L, Wu G, Wang F, Cai Y 2014 Opt. Laser Technol. 56 92

    [41]

    Wang X, Liu Z, Zhao D 2014 Opt. Eng. 53 086112

    [42]

    Tang B, Jiang S, Jiang C, Zhu H 2014 Opt. Laser Technol. 59 116

计量
  • 文章访问数:  3950
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-06
  • 修回日期:  2016-07-31
  • 刊出日期:  2016-10-05

像散正弦-高斯光束的分数傅里叶变换与椭圆空心光束产生

  • 1. 贵州理工学院理学院, 贵阳 550003;
  • 2. 中南大学物理与电子学院, 长沙 410083
  • 通信作者: 朱开成, kczhu058@csu.edu.cn
    基金项目: 贵州理工学院高层次人才引进科研启动费资助的课题.

摘要: 基于分数傅里叶变换(FrFT)关系,推导了像散正弦-高斯光束场分布的解析表达式,利用所得结果和数值方法研究了像散正弦-高斯光束在FrFT平面上的光强分布与位相特性.理论和数值分析结果都表明:像散的存在使得正弦-高斯光束在FrFT过程中从初始输入具有边缘位错的多斑花样转换为具有涡旋的暗空心椭圆花样,且其拓扑荷指数为一,而在这种转换中像散起着关键控制作用.此外,适当选择光束参数与FrFT系统结构参数,暗空心椭圆花样的长轴可以是短轴的百余倍,因此利用这一方案可获得相当细长的暗空心椭圆光束.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回