搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非球形气溶胶粒子及大气相对湿度对自由空间量子通信性能的影响

聂敏 任家明 杨光 张美玲 裴昌幸

引用本文:
Citation:

非球形气溶胶粒子及大气相对湿度对自由空间量子通信性能的影响

聂敏, 任家明, 杨光, 张美玲, 裴昌幸

Influences of nonspherical aerosol particles and relative humidity of atmosphere on the performance of free space quantum communication

Nie Min, Ren Jia-Ming, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing
PDF
导出引用
  • 当量子光信号在自由空间中传输时,不可避免地会穿过大气,而存在于大气的气溶胶的光散射与吸收必然会影响量子光信号的传输.本文根据气溶胶粒子谱分布及其消光系数,提出了圆柱形、椭球形、Chebyshev三种非球形气溶胶粒子与链路衰减、量子纠缠度的关系;分析了大气相对湿度与量子纠缠度、保真度的定量关系.仿真结果表明,圆柱形、椭球形、Chebyshev三种非球形气溶胶粒子对链路的衰减程度依次递增;随着圆柱形、椭球形粒子的取向比和Chebyshev粒子的等效半径的增加,纠缠度呈不同的变化趋势;当大气相对湿度为0.2和0.9时,纠缠度和保真度分别为0.72,0.32和0.75,0.22.由此可见,非球形气溶胶粒子及大气相对湿度对量子通信系统的性能影响极大.所以,在实际的量子通信系统中,应根据不同非球形气溶胶粒子和大气相对湿度,自适应调整系统的各项参数,以提高量子通信的可靠性.
    When the optical signal is transmitted in the free space, it inevitably passes through the atmosphere. The atmospheric aerosol is one of the most important components of the atmosphere, which not only affects the regional climate, but also influences the transmission of the free space optical signal. However, the study on the relationship between the non-spherical aerosols and the parameters of the free space quantum communication channel has not been carried out so far. To investigate this relationship, the spectral distribution function of the aerosol and its extinction factor should be analyzed first. According to three nonspherical aerosol particles: cylindrical particles, ellipsoidal particles and Chebyshev particles, the equation between channel attenuation of the free space quantum communication and the degree of quantum entanglement can then be established. After that, the effects of the relative humidity of the atmosphere on the degree of quantum entanglement and the fidelity of quantum communication can be analyzed and simulated finally. The simulation results show that the channel attenuations of the free space quantum communication are sequenced in ascending order as cylindrical particles, ellipsoidal particles, and Chebyshev particles, and their influences on the degree of quantum entanglement have different changing trends. When the transmission time is fixed, with the increase of aspect ratio of ellipsoidal particles, the degree of quantum entanglement shows a growing trend, with the increase of aspect ratio of cylindrical particles, the degree of quantum entanglement shows descending trend. With the increase of Chebyshev particle equivalent radius, the degree of quantum entanglement also shows the descending trend. When the relative humidity of the atmosphere is 0.2(0.9), the degree of quantum entanglement and the fidelity of quantum communication will be 0.72(0.75) and 0.32(0.22), respectively. It can be seen that the nonspherical aerosol particles and the relative humidity of the atmosphere each have a significant effect on the function of the free space quantum communication system. Therefore, in a practical free space quantum communication system, the shape factor of nonspherical aerosol particle, orientating factor, equivalent radius and the relative humidity of the atmosphere cannot be ignored, in order to improve the effectiveness and reliability of the free space quantum communication, the different parameters of the communication system should be adjusted adaptively.
      通信作者: 任家明, 1572797924@qq.com
    • 基金项目: 国家自然科学基金(批准号:61172071,61201194)、陕西省自然科学基础研究计划(批准号:2014JQ8318)和陕西省国际科技合作与交流计划项目(批准号:2015KW-013)资助的课题.
      Corresponding author: Ren Jia-Ming, 1572797924@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172071, 61201194), the Natural Science Research Foundation of Shaanxi Province, China (Grant No. 2014JQ8318) and the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013).
    [1]

    Aden A L, Kerker M 1951 Appl. Phys. 22 1242

    [2]

    Xu L, Pan X B, Shi G Y, Yan B T X, Ao Y J Y, Yuan G Y L, Gong Z B, Zhou J 1998 J. Acta Meteorol. Sin. 56 551 (in Chinese) [许黎, 攀小标, 石广玉, 岩坂泰信, 奥原靖彦, 原圭一郎, 龚知本, 周军1998气象学报56 551]

    [3]

    Hudson P K, Gibson E R, Yong M A 1997 J. Geophys. Res. 113 D01201

    [4]

    Hoyningen-Huene W, Posse P 1997 J. Quant. Spectr. Rad. Trans. 57 651

    [5]

    Waterman P C 1999 J. Opt. Soc. Am. A 16 2968

    [6]

    Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491

    [7]

    Yee K 1996 IEEE Trans. Antenn. Prop. 14 302

    [8]

    Xu Y, Gustafson B S 2001 J. Quant. Spectr. Rad. Trans. 70 395

    [9]

    Fan M, Chen L F, Li S S, Tao J H, Su L, Zou M M, Zhang Y, Han D 2012 Acta Phys. Sin. 61 204202 (in Chinese) [范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩东2012物理学报61 204202]

    [10]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸2014物理学报63 240303]

    [11]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸2015物理学报64 150301]

    [12]

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834 (in Chinese) [阎毅, 裴昌幸, 韩宝彬, 赵楠2008电波科学学报23 834]

    [13]

    Tao J H, Wang Z F, Xu Q, Li L J, Fan M, Tao M H, Su L, Chen L F 2015 J. Remot. Sens. 19 12 (in Chinese) [陶金花, 王子峰, 徐谦, 李令军, 范萌, 陶明辉, 苏林, 陈良富2015遥感学报19 12]

    [14]

    Lanzagorta M (translated by Zhou W X, Wu M Y, Hu M C, Jin L) 2013 Quantum Radar (Beijing: Publishing House Of Electronics Industry) pp15-17(in Chinese) [兰萨戈尔塔M著(周万幸, 吴鸣亚, 胡明春, 金林译) 2013量子雷达(北京: 电子工业出版社)第15–17页]

    [15]

    Shao C C, Ma J J 2010 J. At. Mol. Phys. 27 475 (in Chinese) [邵长城, 麻金继2010原子与分子物理学报27 475]

    [16]

    Kaegi R 2004 J. Aerosol Sci. 35 621

    [17]

    Cai J, Gao J, Fan Z G, Fen S, Fang J 2013 Chin. J. Lumin. 34 639 (in Chinese) [蔡嘉, 高隽, 范之国, 冯屾, 方静2013发光学报34 639]

    [18]

    Ren J, Nie M, Yang G, Pei C X 2015 Acta Phot. Sin. 44 1227003 (in Chinese) [任杰, 聂敏, 杨光, 裴昌幸2015光子学报44 1227003]

    [19]

    Middleton W E K 1954 Phys. Today 7 254

    [20]

    Wang J, Niu S J, Yu X N 2013 Chin. Environ. Sci. 33 201 (in Chinese) [王静, 牛生杰, 于兴娜2013中国环境科学33 201]

    [21]

    Gong C W, Li X B, Li J Y, Cao Y N, Zhu W Y, Xu Q S, Wei H L 2014 Acta Opt. Sin. 34 16 (in Chinese) [宫纯文, 李学彬, 李建玉, 曹亚楠, 朱文越, 徐青山, 魏合理2014光学学报34 16]

    [22]

    Bu Y C, Zhao Y K, Chen Z Y, Zhang P, Huang H J 2015 Chin. J. Laser 42 288 (in Chinese) [卜一川, 赵永凯, 陈正岩, 张佩, 黄惠杰2015中国激光42 288]

    [23]

    Chen Y R, Li Q, Liu T J, Feng F Q 2011 Optoe. Eng. 38 42 (in Chinese) [陈玉茹, 李晴, 刘庭杰, 冯富强2011光电工程38 42]

  • [1]

    Aden A L, Kerker M 1951 Appl. Phys. 22 1242

    [2]

    Xu L, Pan X B, Shi G Y, Yan B T X, Ao Y J Y, Yuan G Y L, Gong Z B, Zhou J 1998 J. Acta Meteorol. Sin. 56 551 (in Chinese) [许黎, 攀小标, 石广玉, 岩坂泰信, 奥原靖彦, 原圭一郎, 龚知本, 周军1998气象学报56 551]

    [3]

    Hudson P K, Gibson E R, Yong M A 1997 J. Geophys. Res. 113 D01201

    [4]

    Hoyningen-Huene W, Posse P 1997 J. Quant. Spectr. Rad. Trans. 57 651

    [5]

    Waterman P C 1999 J. Opt. Soc. Am. A 16 2968

    [6]

    Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491

    [7]

    Yee K 1996 IEEE Trans. Antenn. Prop. 14 302

    [8]

    Xu Y, Gustafson B S 2001 J. Quant. Spectr. Rad. Trans. 70 395

    [9]

    Fan M, Chen L F, Li S S, Tao J H, Su L, Zou M M, Zhang Y, Han D 2012 Acta Phys. Sin. 61 204202 (in Chinese) [范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩东2012物理学报61 204202]

    [10]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸2014物理学报63 240303]

    [11]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸2015物理学报64 150301]

    [12]

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834 (in Chinese) [阎毅, 裴昌幸, 韩宝彬, 赵楠2008电波科学学报23 834]

    [13]

    Tao J H, Wang Z F, Xu Q, Li L J, Fan M, Tao M H, Su L, Chen L F 2015 J. Remot. Sens. 19 12 (in Chinese) [陶金花, 王子峰, 徐谦, 李令军, 范萌, 陶明辉, 苏林, 陈良富2015遥感学报19 12]

    [14]

    Lanzagorta M (translated by Zhou W X, Wu M Y, Hu M C, Jin L) 2013 Quantum Radar (Beijing: Publishing House Of Electronics Industry) pp15-17(in Chinese) [兰萨戈尔塔M著(周万幸, 吴鸣亚, 胡明春, 金林译) 2013量子雷达(北京: 电子工业出版社)第15–17页]

    [15]

    Shao C C, Ma J J 2010 J. At. Mol. Phys. 27 475 (in Chinese) [邵长城, 麻金继2010原子与分子物理学报27 475]

    [16]

    Kaegi R 2004 J. Aerosol Sci. 35 621

    [17]

    Cai J, Gao J, Fan Z G, Fen S, Fang J 2013 Chin. J. Lumin. 34 639 (in Chinese) [蔡嘉, 高隽, 范之国, 冯屾, 方静2013发光学报34 639]

    [18]

    Ren J, Nie M, Yang G, Pei C X 2015 Acta Phot. Sin. 44 1227003 (in Chinese) [任杰, 聂敏, 杨光, 裴昌幸2015光子学报44 1227003]

    [19]

    Middleton W E K 1954 Phys. Today 7 254

    [20]

    Wang J, Niu S J, Yu X N 2013 Chin. Environ. Sci. 33 201 (in Chinese) [王静, 牛生杰, 于兴娜2013中国环境科学33 201]

    [21]

    Gong C W, Li X B, Li J Y, Cao Y N, Zhu W Y, Xu Q S, Wei H L 2014 Acta Opt. Sin. 34 16 (in Chinese) [宫纯文, 李学彬, 李建玉, 曹亚楠, 朱文越, 徐青山, 魏合理2014光学学报34 16]

    [22]

    Bu Y C, Zhao Y K, Chen Z Y, Zhang P, Huang H J 2015 Chin. J. Laser 42 288 (in Chinese) [卜一川, 赵永凯, 陈正岩, 张佩, 黄惠杰2015中国激光42 288]

    [23]

    Chen Y R, Li Q, Liu T J, Feng F Q 2011 Optoe. Eng. 38 42 (in Chinese) [陈玉茹, 李晴, 刘庭杰, 冯富强2011光电工程38 42]

  • [1] 聂敏, 王超旭, 杨光, 张美玲, 孙爱晶, 裴昌幸. 降雪对地表附近自由空间量子信道的影响及参数仿真. 物理学报, 2021, 70(3): 030301. doi: 10.7498/aps.70.20200972
    [2] 陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中. 基于纠缠相干态的量子照明雷达. 物理学报, 2021, 70(17): 170601. doi: 10.7498/aps.70.20210462
    [3] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略. 物理学报, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [4] 聂敏, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于袋鼠纠缠跳跃模型的量子状态自适应跳变通信策略. 物理学报, 2019, 68(11): 110301. doi: 10.7498/aps.68.20190163
    [5] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信. 物理学报, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [6] 任宝藏, 邓富国. 光子两自由度超并行量子计算与超纠缠态操控. 物理学报, 2015, 64(16): 160303. doi: 10.7498/aps.64.160303
    [7] 张学海, 魏合理, 戴聪明, 曹亚楠, 李学彬. 取向比对椭球气溶胶粒子散射特性的影响. 物理学报, 2015, 64(22): 224205. doi: 10.7498/aps.64.224205
    [8] 聂敏, 任杰, 杨光, 张美玲, 裴昌幸. PM2.5大气污染对自由空间量子通信性能的影响. 物理学报, 2015, 64(15): 150301. doi: 10.7498/aps.64.150301
    [9] 范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩冬. 非球形气溶胶粒子短波红外散射特性研究. 物理学报, 2012, 61(20): 204202. doi: 10.7498/aps.61.204202
    [10] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [11] 曹辉, 赵清. 双势阱中冷原子的关联隧穿. 物理学报, 2010, 59(4): 2187-2192. doi: 10.7498/aps.59.2187
    [12] 张国锋, 卜晶晶. 共振和非共振情况下非简并双光子Tavis-Cummings模型中原子与原子之间的纠缠演化. 物理学报, 2010, 59(3): 1462-1467. doi: 10.7498/aps.59.1462
    [13] 郭亮, 梁先庭. T-C模型中光场和原子以及原子与原子之间的纠缠演化. 物理学报, 2009, 58(1): 50-54. doi: 10.7498/aps.58.50
    [14] 王金东, 路 巍, 赵 峰, 刘小宝, 郭邦红, 张 静, 黄宇娴, 路轶群, 刘颂豪. 稳定的低噪声自由空间量子密钥分配实验研究. 物理学报, 2008, 57(7): 4214-4218. doi: 10.7498/aps.57.4214
    [15] 王少凯, 任继刚, 金贤敏, 杨 彬, 杨 冬, 彭承志, 蒋 硕, 王向斌. 自由空间量子通讯实验中纠缠源的研制. 物理学报, 2008, 57(3): 1356-1359. doi: 10.7498/aps.57.1356
    [16] 司福祺, 刘建国, 谢品华, 张玉钧, 窦 科, 刘文清. 差分吸收光谱技术监测大气气溶胶粒谱分布. 物理学报, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
    [17] 姜春蕾, 方卯发, 吴珍珍. 双纠缠原子在耗散腔场中的纠缠动力学. 物理学报, 2006, 55(9): 4647-4651. doi: 10.7498/aps.55.4647
    [18] 苗二龙, 莫小范, 桂有珍, 韩正甫, 郭光灿. 相位调制自由空间量子密钥分配. 物理学报, 2004, 53(7): 2123-2126. doi: 10.7498/aps.53.2123
    [19] 张国锋, 贾新娟, 严启伟, 梁九卿. 纠缠度对双光子Jaynes-Cumming模型的光学效应的影响. 物理学报, 2003, 52(10): 2393-2398. doi: 10.7498/aps.52.2393
    [20] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度. 物理学报, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
计量
  • 文章访问数:  2964
  • PDF下载量:  436
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-20
  • 修回日期:  2016-05-20
  • 刊出日期:  2016-10-05

非球形气溶胶粒子及大气相对湿度对自由空间量子通信性能的影响

  • 1. 西安邮电大学通信与信息工程学院, 西安 710121;
  • 2. 西北工业大学电子信息工程学院, 西安 710072;
  • 3. 西安电子科技大学, 综合业务网国家重点实验室, 西安 710071
  • 通信作者: 任家明, 1572797924@qq.com
    基金项目: 国家自然科学基金(批准号:61172071,61201194)、陕西省自然科学基础研究计划(批准号:2014JQ8318)和陕西省国际科技合作与交流计划项目(批准号:2015KW-013)资助的课题.

摘要: 当量子光信号在自由空间中传输时,不可避免地会穿过大气,而存在于大气的气溶胶的光散射与吸收必然会影响量子光信号的传输.本文根据气溶胶粒子谱分布及其消光系数,提出了圆柱形、椭球形、Chebyshev三种非球形气溶胶粒子与链路衰减、量子纠缠度的关系;分析了大气相对湿度与量子纠缠度、保真度的定量关系.仿真结果表明,圆柱形、椭球形、Chebyshev三种非球形气溶胶粒子对链路的衰减程度依次递增;随着圆柱形、椭球形粒子的取向比和Chebyshev粒子的等效半径的增加,纠缠度呈不同的变化趋势;当大气相对湿度为0.2和0.9时,纠缠度和保真度分别为0.72,0.32和0.75,0.22.由此可见,非球形气溶胶粒子及大气相对湿度对量子通信系统的性能影响极大.所以,在实际的量子通信系统中,应根据不同非球形气溶胶粒子和大气相对湿度,自适应调整系统的各项参数,以提高量子通信的可靠性.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回