搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声散射的水下气泡群空间关联性研究

范雨喆 李海森 徐超 陈宝伟 杜伟东

引用本文:
Citation:

基于声散射的水下气泡群空间关联性研究

范雨喆, 李海森, 徐超, 陈宝伟, 杜伟东

Spatial correlation of underwater bubble clouds based on acoustic scattering

Fan Yu-Zhe, Li Hai-Sen, Xu Chao, Chen Bao-Wei, Du Wei-Dong
PDF
导出引用
  • 基于气泡空间位置非独立分布气泡群的线性声散射,从统计观点对气泡间的空间关联性进行了研究,通过对气泡群进行子区域划分,提出了等效空间关联函数这一概念.由于等效空间关联函数随气泡空间位置变化而变化,提出了基于子气泡群散射声波的气泡分布以及聚集趋势的声学反演方法.通过对理论进行建模仿真发现,这一方法不但能准确反演出气泡群的分布及聚集趋势,还具有在被多个含聚集中心气泡群''掩埋''的条件下对目标气泡群聚集趋势的检测能力.为了进一步对理论进行验证,对船舶气泡尾流进行了声学测量,实验获得的等效空间关联函数符合尾流中气泡群的分布和聚集趋势.本文的研究工作可为海洋中不同成因的气泡群识别以及恶劣海况下风浪形成气泡群''掩埋''下的尾流、鱼群等水下气泡群检测提供理论基础.
    With using the effective medium theory to describe acoustic scattering from bubble clouds, one of the underlying assumptions shows that the probability of an individual bubble located at some position in space is independent of the locations of other bubbles. However, bubbles within the clouds that naturally occur are usually influenced by the motion of the fluid, which makes them preferentially concentrated or clustered. According to Weber's method, it is a useful way of introducing the spatial correlation function to describe this phenomenon in bubble cloud. The spatial correlation function is involved in acoustic scattering and it is important to notice that the spatial correlation should be dependent on the position and radius of each bubble due to the “hole correction” or the effect of the dynamics of the fluid. Because of these reasons, it is hard to invert the spatial distribution of bubble clouds by using the spatial correlation function in acoustic scattering. A method is described here in which bubble clouds are separated into many small subareas and the conception, called effective spatial correlation function which is the statistic of spatial correlation function, is used to describe the correlation between subareas of bubble clouds. Since the effective spatial correlation function is independent of bubble radius and positions, the bubble clouddistribution and the trend of clustering can be inverted by using this function. The simulation indicates that the effective spatial correlation function can precisely trace the position of the clustering center, even the clustering center covered by other bubble clouds can be detected. With using the multi-bean sonar for measuring the bubbly ship wake generated by a small trial vessel, the method is used to invert the spatial distribution and clustering centers of bubble field in the ship wake. The results show that the effective spatial correlation function accurately inverts the distribution and clustering centers of bubbles in ship wake. Furthermore, the method presented in this paper could distinguish between the bubble clouds caused by different reasons and detect upper ocean bubble clouds covered by other bubbles generated by wave breaking as well.
      通信作者: 陈宝伟, cbwwin@163.com
    • 基金项目: 国家自然科学基金(批准号:41306038,41576102,41606115)和中央高校基本科研业务费专项资金(批准号:HEUCF160510)资助的课题.
      Corresponding author: Chen Bao-Wei, cbwwin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 41306038, 41576102, 41606115) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No. HEUCF160510).
    [1]

    Kargl S G 2002 J. Acoust. Soc. Am. 111 1

    [2]

    Foldy L L 1945 Phys. Rev. 67 107

    [3]

    Ye Z, Ding L 1995 J. Acoust. Soc. Am. 98 3

    [4]

    Henyey F S 1999 J. Acoust. Soc. Am. 105 4

    [5]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [6]

    Wang Y 2014 Ph. D. Dissertation(Xi'an:Shanxi Normal University)(in Chinese)[王勇2014博士学位论文(西安:陕西师范大学)]

    [7]

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304 (in Chinese)[王勇, 林书玉, 张小丽2013物理学报62 064304]

    [8]

    Eaton J, Fessler J 1994 Int. J. Multiphase Flow 20 94

    [9]

    Weber T C, Lyons A P, Bradley D L 2007 IEEE J. Ocean Eng. 32 2

    [10]

    Shaw R A, Kostinski A B, Larsen M L 2002 Qu. J. R. Meteorol Soc. 128 582

    [11]

    Weber T C 2008 J. Acoust. Soc. Am. 124 5

    [12]

    Landau L D, Lifshitz E M(translated by Shu R G, Shu C) 2011 Statistical Physics (Beijing:Higher Education Press) p309(in Chinese)[朗道L D, 栗弗席兹(E M)著(束仁贵, 束莼译) 2014统计物理学I(北京:高等教育出版社)第309页]

    [13]

    Ma Y, Lin S Y, Xian X J 2016 Acta Phys. Sin. 65 014301 (in Chinese)[马艳, 林书玉, 鲜小军2016物理学报65 014301]

    [14]

    Caleap M, Drinkwater B W, Wilcox P D 2012 J. Acoust. Soc. Am. 131 3

    [15]

    Gustavssion K, Mehlig B 2016 Adv. Phys. 65 1

    [16]

    Sun C S 2008 Ph. D. Dissertation(Changsha:National University of Defense Technology University)(in Chinese)[孙春生2008博士学位论文(长沙:国防科学技术大学)]

    [17]

    Peltzer R D, Garrett W D, Smith P M 1987 Int. J. Remote Sens. 85

    [18]

    Trevorrow M V, Vagle S, Farmer D M 1994 J. Acoust. Soc. Am. 95 4

    [19]

    Weber T C, Lyons A P, Bradley D L 2005 J. Geophys. Res. 110C 4

    [20]

    Li S 2014 Ph. D. Dissertation(Harbin:Harbin Engineering University)(in Chinese)[李珊2014博士学位论文(哈尔滨:哈尔滨工程大学)]

    [21]

    Li H, Li S, Chen B, Xu C, Zhu J, Du W 2014 Oceans'14 MTS/IEEE St. John's, Canada, September 14-19, 2014 pp1-5

    [22]

    Vagle S, Burch H 2005 J. Acoust. Soc. Am. 117 1

    [23]

    Leightion T G, Ginfer D C, Chua G H, White P R, Dix J K 2011 J. Acoust. Soc. Am. 130 5

    [24]

    Chen W Z, 2014 Acoustic Cavitation Physics (Beijing:Science Press) p214(in Chinese)[陈伟中2014声空化物理(北京:科学出版社)第341页]

  • [1]

    Kargl S G 2002 J. Acoust. Soc. Am. 111 1

    [2]

    Foldy L L 1945 Phys. Rev. 67 107

    [3]

    Ye Z, Ding L 1995 J. Acoust. Soc. Am. 98 3

    [4]

    Henyey F S 1999 J. Acoust. Soc. Am. 105 4

    [5]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [6]

    Wang Y 2014 Ph. D. Dissertation(Xi'an:Shanxi Normal University)(in Chinese)[王勇2014博士学位论文(西安:陕西师范大学)]

    [7]

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304 (in Chinese)[王勇, 林书玉, 张小丽2013物理学报62 064304]

    [8]

    Eaton J, Fessler J 1994 Int. J. Multiphase Flow 20 94

    [9]

    Weber T C, Lyons A P, Bradley D L 2007 IEEE J. Ocean Eng. 32 2

    [10]

    Shaw R A, Kostinski A B, Larsen M L 2002 Qu. J. R. Meteorol Soc. 128 582

    [11]

    Weber T C 2008 J. Acoust. Soc. Am. 124 5

    [12]

    Landau L D, Lifshitz E M(translated by Shu R G, Shu C) 2011 Statistical Physics (Beijing:Higher Education Press) p309(in Chinese)[朗道L D, 栗弗席兹(E M)著(束仁贵, 束莼译) 2014统计物理学I(北京:高等教育出版社)第309页]

    [13]

    Ma Y, Lin S Y, Xian X J 2016 Acta Phys. Sin. 65 014301 (in Chinese)[马艳, 林书玉, 鲜小军2016物理学报65 014301]

    [14]

    Caleap M, Drinkwater B W, Wilcox P D 2012 J. Acoust. Soc. Am. 131 3

    [15]

    Gustavssion K, Mehlig B 2016 Adv. Phys. 65 1

    [16]

    Sun C S 2008 Ph. D. Dissertation(Changsha:National University of Defense Technology University)(in Chinese)[孙春生2008博士学位论文(长沙:国防科学技术大学)]

    [17]

    Peltzer R D, Garrett W D, Smith P M 1987 Int. J. Remote Sens. 85

    [18]

    Trevorrow M V, Vagle S, Farmer D M 1994 J. Acoust. Soc. Am. 95 4

    [19]

    Weber T C, Lyons A P, Bradley D L 2005 J. Geophys. Res. 110C 4

    [20]

    Li S 2014 Ph. D. Dissertation(Harbin:Harbin Engineering University)(in Chinese)[李珊2014博士学位论文(哈尔滨:哈尔滨工程大学)]

    [21]

    Li H, Li S, Chen B, Xu C, Zhu J, Du W 2014 Oceans'14 MTS/IEEE St. John's, Canada, September 14-19, 2014 pp1-5

    [22]

    Vagle S, Burch H 2005 J. Acoust. Soc. Am. 117 1

    [23]

    Leightion T G, Ginfer D C, Chua G H, White P R, Dix J K 2011 J. Acoust. Soc. Am. 130 5

    [24]

    Chen W Z, 2014 Acoustic Cavitation Physics (Beijing:Science Press) p214(in Chinese)[陈伟中2014声空化物理(北京:科学出版社)第341页]

  • [1] 李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 液体薄层中环链状空化泡云结构稳定性分析. 物理学报, 2022, 71(8): 084303. doi: 10.7498/aps.71.20212257
    [2] 侯森, 胡长青, 赵梅. 利用声衰减反演气泡群分布的方法研究. 物理学报, 2021, 70(4): 044301. doi: 10.7498/aps.70.20201385
    [3] 马瑞轩, 王益民, 张树海, 武从海, 王勋年. 旋涡声散射特性的尺度效应数值研究. 物理学报, 2021, 70(10): 104301. doi: 10.7498/aps.70.20202206
    [4] 周彦玲, 范军, 王斌, 李兵. 水下环形凹槽圆柱体散射声场空间指向性调控. 物理学报, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [5] 王益民, 马瑞轩, 武从海, 罗勇, 张树海. 旋涡声散射的空间尺度特性数值研究. 物理学报, 2021, 70(19): 194302. doi: 10.7498/aps.70.20202232
    [6] 清河美, 那仁满都拉. 不同类型气泡组成的混合泡群声空化特性. 物理学报, 2020, 69(18): 184301. doi: 10.7498/aps.69.20200381
    [7] 周彦玲, 范军, 王斌. 塑料类高分子聚合物材料水中目标声学参数反演. 物理学报, 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [8] 冯康艺, 王成会. 超声场中空化泡对弹性粒子微流的影响. 物理学报, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [9] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究. 物理学报, 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [10] 潘安, 范军, 王斌, 陈志刚, 郑国垠. 双层周期加肋有限长圆柱壳声散射精细特征研究. 物理学报, 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [11] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法. 物理学报, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [12] 胡静, 林书玉, 王成会, 李锦. 超声波作用下泡群的共振声响应. 物理学报, 2013, 62(13): 134303. doi: 10.7498/aps.62.134303
    [13] 吴海军, 蒋伟康, 鲁文波. 三维声学多层快速多极子边界元及其应用. 物理学报, 2012, 61(5): 054301. doi: 10.7498/aps.61.054301
    [14] 沈壮志, 吴胜举. 声场中气泡群的动力学特性. 物理学报, 2012, 61(24): 244301. doi: 10.7498/aps.61.244301
    [15] 柯微娜, 程 茜, 钱梦騄. 测量单泡声致发光中气泡R(t)曲线的前向Mie散射技术. 物理学报, 2008, 57(6): 3629-3635. doi: 10.7498/aps.57.3629
    [16] 张阿漫, 姚熊亮, 李 佳. 气泡群的动态物理特性研究. 物理学报, 2008, 57(3): 1672-1682. doi: 10.7498/aps.57.1672
    [17] 徐 涵, 常文蔚, 卓红斌. 短脉冲激光尾流场中的前向Raman散射. 物理学报, 2003, 52(1): 135-139. doi: 10.7498/aps.52.135
    [18] 尤云祥, 缪国平. 三维可穿透目标远场声波反演的一种指示器样本方法. 物理学报, 2002, 51(9): 2038-2051. doi: 10.7498/aps.51.2038
    [19] 尤云祥, 缪国平. 阻抗障碍物声散射的反问题. 物理学报, 2002, 51(2): 270-278. doi: 10.7498/aps.51.270
    [20] 尤云祥, 缪国平, 刘应中. 用近场声学测量信息可视化多个三维障碍物的一种快速算法. 物理学报, 2001, 50(6): 1103-1109. doi: 10.7498/aps.50.1103
计量
  • 文章访问数:  2921
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-06
  • 修回日期:  2016-09-29
  • 刊出日期:  2017-01-05

基于声散射的水下气泡群空间关联性研究

  • 1. 哈尔滨工程大学水声工程学院, 水声技术重点实验室, 哈尔滨 150001
  • 通信作者: 陈宝伟, cbwwin@163.com
    基金项目: 国家自然科学基金(批准号:41306038,41576102,41606115)和中央高校基本科研业务费专项资金(批准号:HEUCF160510)资助的课题.

摘要: 基于气泡空间位置非独立分布气泡群的线性声散射,从统计观点对气泡间的空间关联性进行了研究,通过对气泡群进行子区域划分,提出了等效空间关联函数这一概念.由于等效空间关联函数随气泡空间位置变化而变化,提出了基于子气泡群散射声波的气泡分布以及聚集趋势的声学反演方法.通过对理论进行建模仿真发现,这一方法不但能准确反演出气泡群的分布及聚集趋势,还具有在被多个含聚集中心气泡群''掩埋''的条件下对目标气泡群聚集趋势的检测能力.为了进一步对理论进行验证,对船舶气泡尾流进行了声学测量,实验获得的等效空间关联函数符合尾流中气泡群的分布和聚集趋势.本文的研究工作可为海洋中不同成因的气泡群识别以及恶劣海况下风浪形成气泡群''掩埋''下的尾流、鱼群等水下气泡群检测提供理论基础.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回