搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂对称性对(110)晶向生长GaAs/AlGaAs量子阱中电子自旋弛豫动力学的影响}

滕利华 牟丽君

引用本文:
Citation:

掺杂对称性对(110)晶向生长GaAs/AlGaAs量子阱中电子自旋弛豫动力学的影响}

滕利华, 牟丽君

Effect of doping symmetry on electron spin relaxation dynamics in (110) GaAs/AlGaAs quantum wells

Teng Li-Hua, Mu Li-Jun
PDF
导出引用
  • 采用时间分辨圆偏振光抽运-探测光谱,测量了(110)晶向生长的近似对称和完全非对称掺杂GaAs/AlGaAs量子阱中的电子自旋弛豫,发现两种量子阱材料中的电子自旋弛豫时间随载流子浓度的增大均呈现出先增大后减小的趋势,且近似对称掺杂GaAs量子阱中的电子自旋弛豫时间明显大于完全非对称掺杂量子阱.分析表明,在(110)晶向生长的GaAs量子阱中并非只有通常认为的Bir-Aronov-Pikus(BAP)机理起作用,在低载流子浓度区域,两种量子阱中Dyakonov-Perel(DP)机理起主导作用,高载流子浓度区域BAP机理和DP机理都起作用,完全非对称掺杂的量子阱中DP机理强于近似对称掺杂量子阱.
    Considerable interest has been aroused in the study of the spin dynamics in semiconductors due to its potential applications in spintronics and quantum computation. In this paper, time-resolved circularly polarized pump-probe spectroscopy is used to study the carrier density dependences on the electron spin relaxation in approximately symmetrical and completely asymmetrical doping (110) GaAs/AlGaAs quantum wells. With the increase of the carrier density, the spin relaxation time first increases and then decrease obviously in both of the quantum wells, and the measured spin relaxation time of the approximately symmetrical doping quantum wells is always longer than that of the asymmetrical doping one. By analysis, we find that the spin relaxation is not dominated only by the Bir-Aronov-Pikus (BAP) mechanism in (110) GaAs quantum wells, that though the Dresselhaus spin-orbit coupling does not lead to any spin relaxation, the asymmetry of the doping position contributes to the asymmetry of potential energy structure, thus the built-in electric field which can induce the Rashba spin-orbit coupling to appear, and that the effective magnetic field induced by the Rashba spin-orbit coupling normal to the growth direction can lead to spin relaxation along the growth direction. Therefore, the Dyakonov-Perel (DP) mechanism plays an important role in asymmetrical doping (110) GaAs/AlGaAs quantum wells. In the approximately symmetrical and completely asymmetrical doping (110) GaAs/AlGaAs quantum wells, the DP mechanism dominates the spin relaxation at low carrier density, thus the spin relaxation time increases with carrier density increasing due to the strengthening of the electron-electron scattering and the decreasing of the momentum relaxation time. However, at high carrier density, BAP mechanism plays an important role, thus the spin relaxation time decreases obviously with carrier density increrasing, but the decay rates in both of the quantum wells are slower than that in the casethat only BAP mechanism dominates, because both the DP and BAP mechanism play an important role. The strength of the Rashba spin-orbit coupling depends on the symmetry of the quantum well. The DP mechanism in a completely asymmetrical doping quantum well is stronger than that in an approximately symmetrical doping quantum wells, thus the decay rate in a completely asymmetrical doping quantum wells is always slower than that in an approximately symmetrical doping quantum wells, and the spin relaxation time in a completely asymmetrical doping quantum wells is shorter than that in an approximately symmetrical doping quantum wells.
      通信作者: 滕利华, tenglihua80@163.com
    • 基金项目: 国家自然科学基金(批准号:11504194,11274189)和青岛市应用基础研究计划项目青年专项(批准号:14-2-4-101-jch)资助的课题.
      Corresponding author: Teng Li-Hua, tenglihua80@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11504194,11274189) and the Scientific Development Project of Qingdao,China (Grant No.14-2-4-101-jch).
    [1]

    Zutic I, Fabian J, Das Sarma S 2004Rev. Mod. Phys. 76 323

    [2]

    Loss D, DiVincenzo D P 1998Phys. Rev. A 57 120

    [3]

    Zhang T T, Barate P, Nguyen C T, Balocchi A, Amand T, Renucci P, Carrere H, Urbaszek B, Marie X 2013Phys. Rev. B 87 041201

    [4]

    Krishnamurthy S, van Schilfgaarde M, Newman N 2003Appl. Phys. Lett. 83 1761

    [5]

    Teng L H, Zhang P, Lai T S, Wu M W 2008Europhys. Lett. 84 27006

    [6]

    Lai T S, Teng L H, Jiao Z X, Xu H H, Lei L, Wen J H, Lin W Z 2007Appl. Phys. Lett. 91 062110

    [7]

    Lai T S, Liu X D, Xu H H, Jiao Z X, Wen J H, Lin W Z 2006Appl. Phys. Lett. 88 192106

    [8]

    Chen X X, Teng L H, Liu X D, Huang Q W, Wen J H, Lin W Z, Lai T S 2008Acta Phys. Sin. 57 3853(in Chinese)[陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树2008物理学报57 3853]

    [9]

    Wu Y, Jiao Z X, Lei L, Wen J H, Lai T S, Lin W Z 2006Acta Phys. Sin. 55 2961(in Chinese)[吴羽, 焦中兴, 雷亮, 文锦辉, 赖天树, 林位株2006物理学报55 2961]

    [10]

    Wu M W, Jiang J H, Weng M Q 2010Phys. Reports 493 61

    [11]

    Xia J B, Ge W K, Chang K 2008Semiconductor Spintronics (Beijing:Science Press) p216(in Chinese)[夏建白, 葛惟昆, 常凯2008半导体自旋电子学(北京:科学出版社)第216页]

    [12]

    Ohno Y, Terauchi R, Adachi T, Matsukura F, Ohno H 1999Phys. Rev. Lett. 83 4196

    [13]

    Eldridge P S, Lagoudakis P G, Henini M, Harley R T 2010Phys. Rev. B 81 033302

    [14]

    Vlkl R, Griesbeck M, Tarasenko S A, Schuh D, Wegscheider W, Schller C, Korn T 2011Phys. Rev. B 83 241306

    [15]

    Han L F, Zhu Y G, Zhang X H, Tian P H, Ni H Q, Niu Z C 2011Nanoscale Res. Lett. 6 84

    [16]

    Xu H H, Jiao Z X, Liu X D, Lei L, Wen J H, Wang H, Lin W Z, Lai T S 2006Acta Phys. Sin. 55 2618(in Chinese)[徐海红, 焦中兴, 刘晓东, 雷亮, 文锦辉, 王惠, 林位株, 赖天树2006物理学报55 2618]

    [17]

    Teng L H, Mu L J, Wang X 2014Physica B 436 177

    [18]

    Lai T S, Liu L N, Shou Q, Lei L, Lin W Z 2004Appl. Phys. Lett. 85 4040

    [19]

    Teng L H, Chen K, Wen J H, Lin W Z, Lai T S 2009J. Phys. D:Appl. Phys. 42 135111

    [20]

    Vlkl R, Schwemmer M, Griesbeck M, Tarasenko S A, Schuh D, Wegscheider W, Schller C, Korn T 2014Phys. Rev. B 89 075424

  • [1]

    Zutic I, Fabian J, Das Sarma S 2004Rev. Mod. Phys. 76 323

    [2]

    Loss D, DiVincenzo D P 1998Phys. Rev. A 57 120

    [3]

    Zhang T T, Barate P, Nguyen C T, Balocchi A, Amand T, Renucci P, Carrere H, Urbaszek B, Marie X 2013Phys. Rev. B 87 041201

    [4]

    Krishnamurthy S, van Schilfgaarde M, Newman N 2003Appl. Phys. Lett. 83 1761

    [5]

    Teng L H, Zhang P, Lai T S, Wu M W 2008Europhys. Lett. 84 27006

    [6]

    Lai T S, Teng L H, Jiao Z X, Xu H H, Lei L, Wen J H, Lin W Z 2007Appl. Phys. Lett. 91 062110

    [7]

    Lai T S, Liu X D, Xu H H, Jiao Z X, Wen J H, Lin W Z 2006Appl. Phys. Lett. 88 192106

    [8]

    Chen X X, Teng L H, Liu X D, Huang Q W, Wen J H, Lin W Z, Lai T S 2008Acta Phys. Sin. 57 3853(in Chinese)[陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树2008物理学报57 3853]

    [9]

    Wu Y, Jiao Z X, Lei L, Wen J H, Lai T S, Lin W Z 2006Acta Phys. Sin. 55 2961(in Chinese)[吴羽, 焦中兴, 雷亮, 文锦辉, 赖天树, 林位株2006物理学报55 2961]

    [10]

    Wu M W, Jiang J H, Weng M Q 2010Phys. Reports 493 61

    [11]

    Xia J B, Ge W K, Chang K 2008Semiconductor Spintronics (Beijing:Science Press) p216(in Chinese)[夏建白, 葛惟昆, 常凯2008半导体自旋电子学(北京:科学出版社)第216页]

    [12]

    Ohno Y, Terauchi R, Adachi T, Matsukura F, Ohno H 1999Phys. Rev. Lett. 83 4196

    [13]

    Eldridge P S, Lagoudakis P G, Henini M, Harley R T 2010Phys. Rev. B 81 033302

    [14]

    Vlkl R, Griesbeck M, Tarasenko S A, Schuh D, Wegscheider W, Schller C, Korn T 2011Phys. Rev. B 83 241306

    [15]

    Han L F, Zhu Y G, Zhang X H, Tian P H, Ni H Q, Niu Z C 2011Nanoscale Res. Lett. 6 84

    [16]

    Xu H H, Jiao Z X, Liu X D, Lei L, Wen J H, Wang H, Lin W Z, Lai T S 2006Acta Phys. Sin. 55 2618(in Chinese)[徐海红, 焦中兴, 刘晓东, 雷亮, 文锦辉, 王惠, 林位株, 赖天树2006物理学报55 2618]

    [17]

    Teng L H, Mu L J, Wang X 2014Physica B 436 177

    [18]

    Lai T S, Liu L N, Shou Q, Lei L, Lin W Z 2004Appl. Phys. Lett. 85 4040

    [19]

    Teng L H, Chen K, Wen J H, Lin W Z, Lai T S 2009J. Phys. D:Appl. Phys. 42 135111

    [20]

    Vlkl R, Schwemmer M, Griesbeck M, Tarasenko S A, Schuh D, Wegscheider W, Schller C, Korn T 2014Phys. Rev. B 89 075424

计量
  • 文章访问数:  1798
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-01
  • 修回日期:  2016-10-10
  • 刊出日期:  2017-02-05

掺杂对称性对(110)晶向生长GaAs/AlGaAs量子阱中电子自旋弛豫动力学的影响}

  • 1. 青岛科技大学物理系, 山东省新型光电材料与技术工程实验室, 青岛 266061
  • 通信作者: 滕利华, tenglihua80@163.com
    基金项目: 

    国家自然科学基金(批准号:11504194,11274189)和青岛市应用基础研究计划项目青年专项(批准号:14-2-4-101-jch)资助的课题.

摘要: 采用时间分辨圆偏振光抽运-探测光谱,测量了(110)晶向生长的近似对称和完全非对称掺杂GaAs/AlGaAs量子阱中的电子自旋弛豫,发现两种量子阱材料中的电子自旋弛豫时间随载流子浓度的增大均呈现出先增大后减小的趋势,且近似对称掺杂GaAs量子阱中的电子自旋弛豫时间明显大于完全非对称掺杂量子阱.分析表明,在(110)晶向生长的GaAs量子阱中并非只有通常认为的Bir-Aronov-Pikus(BAP)机理起作用,在低载流子浓度区域,两种量子阱中Dyakonov-Perel(DP)机理起主导作用,高载流子浓度区域BAP机理和DP机理都起作用,完全非对称掺杂的量子阱中DP机理强于近似对称掺杂量子阱.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回