搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀背景中任意柱状热斗篷的研究与设计

夏舸 杨立 寇蔚 杜永成

引用本文:
Citation:

非均匀背景中任意柱状热斗篷的研究与设计

夏舸, 杨立, 寇蔚, 杜永成

Design and research of columnar thermal cloak with arbitrary shape in inhomogeneous backgrounds

Xia Ge, Yang Li, Kou Wei, Du Yong-Cheng
PDF
导出引用
  • 在变换热力学的基础上,通过坐标变换的方法严格推导出在层状背景和渐变背景下二维任意形状热斗篷导热系数的通解表达式,并在此基础上设计出非均匀背景下二维非共形热斗篷.全波仿真结果表明:在不同背景下,热流均能绕过保护区域流出,保护区域的温度保持不变,而且热斗篷外的温度场并没有破坏,具有很好的热保护和热隐身的效果.这一方法考虑到背景的复杂性,更加贴近工程实际应用,为未来灵活控制热流传递提供了一种可行的方法,对目标热隐身和热保护具有重要借鉴意义.
    Recently, thermal metamaterials have attracted more and more attention, and they have been used to manipulate the flow of heat flux. As a typical case, the thermal cloak can conceal the heat signature of an object. To the best of our knowledge, most of researches on cloak have focused on the case in which the background is a single homogeneous medium. However, cloaking in the layered and gradually changing backgrounds is very common in our real life such as hiding the buried mines in several soil backgrounds. In this paper, on the basis of transformation thermodynamics, a general expression of the thermal conductivity for two-dimensional thermal cloak with arbitrary shape in the layered and gradually changing backgrounds is derived by the coordinate transformation method. According to the expression, we design the thermal cloak in different inhomogeneous backgrounds. Results of full wave simulation show that heat flux can travel around the protection area and eventually return to their original path. The temperature profile inside the thermal cloak keeps unchanged, and the temperature field outside the thermal cloak is not distorted, which proves that the cloak has a thermal protection and thermal stealth function. In the end, we propose a useful method of utilizing homogeneous isotropic materials to construct a thermal device according to the equivalent medium theory. The method is closer to the practical application of the project because of considering the complex backgrounds. At the same time, this technology provides a feasible method to control heat transfer in the future and has great significance for thermal stealth and thermal protection.
      通信作者: 杨立, yangli123123@126.com
    • 基金项目: 国家自然科学基金(批准号:11504426)和国防预研基金(批准号:1010502020202)资助的课题.
      Corresponding author: Yang Li, yangli123123@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504426) and the National Defense Foundation of China (Grant No. 1010502020202).
    [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [2]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518

    [3]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002

    [4]

    Farhat M, Guenneau S, Enoch S 2009 Phys. Rev. Lett. 103 024301

    [5]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907

    [6]

    Hu R, Wei X L, Hu J Y, Luo X B 2014 Sci. Rep. 4 3600

    [7]

    Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207

    [8]

    Yang T Z, Huang L J, Chen F, Xu W K 2013 J.Phys.D:Appl.Phys. 46 305102

    [9]

    Mao F C, Li T H, Huang M, Yang J J, Chen J C 2014 Acta Phys. Sin. 63 014401 (in Chinese) [毛春福, 李廷华, 黄铭, 杨晶晶, 陈俊昌 2014 物理学报 63 014401]

    [10]

    Li T H, Zhu D L, Mao F C, Huang M, Yang J J, Li S B 2016 Front. Phys. 11 11503

    [11]

    Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303

    [12]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901

    [13]

    Xu H Y, Shi X H, Gao F, Sun H D, Zhang B 2014 Phys. Rev. Lett. 112 054301

    [14]

    Han T C, Bai X, Gao D L, Thong J T L, Li B W, Qiu C W 2014 Adv. Mater. 26 1731

    [15]

    Ma Y G, Liu Y C, Raza M, Wang Y D, He S L 2014 Phys. Rev. Lett. 112 054301

    [16]

    Ma Y G, Lan L, Jiang W, Sun F, He S L 2013 NPG Asia Mater. 5 e73

    [17]

    Yu C M 1983 Heat Conduction (Beijing: Higher Education Press) p1 (in Chinese) [俞昌铭 1983 热传导 (北京: 高等教育出版社) 第1页]

    [18]

    Yang S M, Tao W Q 2006 Heat Transfer (the Fourth Edition) (Beijing: Higher Education Press) p43 (in Chinese) [杨世铭, 陶文铨 2006 传热学 (第四版) (北京: 高等教育出版社) 第43页]

    [19]

    Sun L K, Yu Z F, Huang J 2015 Acta Phys. Sin. 64 084401 (in Chinese) [孙良奎, 于哲峰, 黄洁 2015 物理学报 64 084401]

    [20]

    Shen X Y, Huang J P 2016 Acta Phys. Sin. 65 178103 (in Chinese) [沈翔瀛, 黄吉平 2016 物理学报 65 178103]

    [21]

    Yuan X B, Lin G C, Wang Y S 2016 Mod. Phys. Lett. B 30 1650256

  • [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [2]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518

    [3]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002

    [4]

    Farhat M, Guenneau S, Enoch S 2009 Phys. Rev. Lett. 103 024301

    [5]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907

    [6]

    Hu R, Wei X L, Hu J Y, Luo X B 2014 Sci. Rep. 4 3600

    [7]

    Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207

    [8]

    Yang T Z, Huang L J, Chen F, Xu W K 2013 J.Phys.D:Appl.Phys. 46 305102

    [9]

    Mao F C, Li T H, Huang M, Yang J J, Chen J C 2014 Acta Phys. Sin. 63 014401 (in Chinese) [毛春福, 李廷华, 黄铭, 杨晶晶, 陈俊昌 2014 物理学报 63 014401]

    [10]

    Li T H, Zhu D L, Mao F C, Huang M, Yang J J, Li S B 2016 Front. Phys. 11 11503

    [11]

    Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303

    [12]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901

    [13]

    Xu H Y, Shi X H, Gao F, Sun H D, Zhang B 2014 Phys. Rev. Lett. 112 054301

    [14]

    Han T C, Bai X, Gao D L, Thong J T L, Li B W, Qiu C W 2014 Adv. Mater. 26 1731

    [15]

    Ma Y G, Liu Y C, Raza M, Wang Y D, He S L 2014 Phys. Rev. Lett. 112 054301

    [16]

    Ma Y G, Lan L, Jiang W, Sun F, He S L 2013 NPG Asia Mater. 5 e73

    [17]

    Yu C M 1983 Heat Conduction (Beijing: Higher Education Press) p1 (in Chinese) [俞昌铭 1983 热传导 (北京: 高等教育出版社) 第1页]

    [18]

    Yang S M, Tao W Q 2006 Heat Transfer (the Fourth Edition) (Beijing: Higher Education Press) p43 (in Chinese) [杨世铭, 陶文铨 2006 传热学 (第四版) (北京: 高等教育出版社) 第43页]

    [19]

    Sun L K, Yu Z F, Huang J 2015 Acta Phys. Sin. 64 084401 (in Chinese) [孙良奎, 于哲峰, 黄洁 2015 物理学报 64 084401]

    [20]

    Shen X Y, Huang J P 2016 Acta Phys. Sin. 65 178103 (in Chinese) [沈翔瀛, 黄吉平 2016 物理学报 65 178103]

    [21]

    Yuan X B, Lin G C, Wang Y S 2016 Mod. Phys. Lett. B 30 1650256

  • [1] 朱诚, 陈仙辉, 王城, 宋明, 夏维东. 氩-碳-硅等离子体热力学性质和输运系数计算. 物理学报, 2023, 72(12): 125202. doi: 10.7498/aps.72.20222390
    [2] 王子, 任捷. 周期驱动系统的非平衡热输运与热力学几何. 物理学报, 2021, 70(23): 230503. doi: 10.7498/aps.70.20211723
    [3] 潘子晗, 陈仙辉, 王城, 夏维东. 双温度氩-氮等离子体热力学和输运性质计算. 物理学报, 2021, 70(8): 085201. doi: 10.7498/aps.70.20202040
    [4] 沈珏, 刘成周, 朱宁宁, 童一诺, 严晨成, 薛珂磊. 非对易施瓦西黑洞的热力学及其量子修正. 物理学报, 2019, 68(20): 200401. doi: 10.7498/aps.68.20191054
    [5] 张智奇, 钱胜, 王瑞金, 朱泽飞. 纳米颗粒聚集形态对纳米流体导热系数的影响. 物理学报, 2019, 68(5): 054401. doi: 10.7498/aps.68.20181740
    [6] 金肖, 王利民. 非晶材料玻璃转变过程中记忆效应的热力学. 物理学报, 2017, 66(17): 176406. doi: 10.7498/aps.66.176406
    [7] 夏舸, 杨立, 寇蔚, 杜永成. 基于变换热力学的三维任意形状热斗篷设计. 物理学报, 2017, 66(10): 104401. doi: 10.7498/aps.66.104401
    [8] 米尔阿里木江, 艾力, 买买提热夏提, 买买提, 亚森江, 吾甫尔. 非对易相空间中谐振子体系热力学性质的探讨. 物理学报, 2015, 64(14): 140201. doi: 10.7498/aps.64.140201
    [9] 张天宝, 俞玄平, 陈阿海. 有限温度下一维Gaudin-Yang模型的热力学性质. 物理学报, 2015, 64(15): 156402. doi: 10.7498/aps.64.156402
    [10] 李满, 戴志高, 应见见, 肖湘衡, 岳亚楠. 基于稳态电热拉曼技术的碳纳米管纤维导热系数测量及传热研究. 物理学报, 2015, 64(12): 126501. doi: 10.7498/aps.64.126501
    [11] 毛福春, 李廷华, 黄铭, 杨晶晶, 陈俊昌. 任意横截面柱形热斗篷研究与设计. 物理学报, 2014, 63(1): 014401. doi: 10.7498/aps.63.014401
    [12] 李廷华, 毛福春, 黄铭, 杨晶晶, 陈俊昌. 基于变换热力学的任意形状热集中器研究与设计. 物理学报, 2014, 63(5): 054401. doi: 10.7498/aps.63.054401
    [13] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒. 相变材料热物理性质的分子动力学模拟. 物理学报, 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [14] 杨红卫, 钟万勰, 侯碧辉. 力学、热力学及电磁波导中的正则变换和辛描述. 物理学报, 2010, 59(7): 4437-4441. doi: 10.7498/aps.59.4437
    [15] 王照亮, 梁金国, 唐大伟, Y. T. Zhu. 单根单壁碳纳米管导热系数随长度变化尺度效应的实验和理论. 物理学报, 2008, 57(6): 3391-3396. doi: 10.7498/aps.57.3391
    [16] 王照亮, 唐大伟, 贾 涛, 毛安民. 3ω法加热/测温膜中温度波解析及其在微/纳米薄膜导热系数测量中的应用. 物理学报, 2007, 56(2): 747-754. doi: 10.7498/aps.56.747
    [17] 沈惠川. 分析热力学的应用:平衡态热力学中温度的相对论变换. 物理学报, 2005, 54(6): 2482-2488. doi: 10.7498/aps.54.2482
    [18] 肖兴国, 赵峥. 具有内禀自旋的荷电稳态轴对称非Kerr-Newman黑洞的热力学性质. 物理学报, 1995, 44(5): 832-840. doi: 10.7498/aps.44.832
    [19] 衣学喜, 王锡绂, 王志兴. 各向异性的费密系统超导转变温度及热力学性质. 物理学报, 1994, 43(1): 124-133. doi: 10.7498/aps.43.124
    [20] 汪卫华, 白海洋, 张云, 陈红, 王文魁. Ni-Si多层膜中固态非晶化反应的热力学与动力学过程. 物理学报, 1993, 42(9): 1499-1504. doi: 10.7498/aps.42.1499
计量
  • 文章访问数:  4463
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-13
  • 修回日期:  2017-02-21
  • 刊出日期:  2017-06-05

/

返回文章
返回