搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯单链量子热输运的同位素效应

吴宇 蔡绍洪 邓明森 孙光宇 刘文江 岑超

引用本文:
Citation:

聚乙烯单链量子热输运的同位素效应

吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江, 岑超

Isotope effect on quantum thermal transport in a polyethylene chain

Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang, Cen Chao
PDF
导出引用
  • 高分子导热材料的有效调控受到了日益广泛的关注.应用密度泛函理论(DFT)、中央插入延展(central insertion scheme,CIS)方法及非平衡格林函数(NEGF)理论,对包含432个原子、长18.533 nm的聚乙烯单链量子热输运的同位素效应进行了研究.计算结果表明,室温下长100 nm的纯12C聚乙烯单链的热导率理论上限高达314.1 W·m-1·K-1;对于12C聚乙烯单链,其他条件一定时,14C掺杂引起的热导同位素效应比13C更为显著;室温下纯12C聚乙烯单链中14C掺杂原子百i分数为50%时同位素效应最显著,此时平均热导比未掺杂时下降了51%.这对探索聚乙烯材料热输运的同位素影响机理具有十分积极的意义.
    both the theoretical and the experimental aspects. Bulk polyethylene is regarded as a thermal insulator because its thermal conductivity is typically on the order of 0.35 W·m-1·K-1. However, recent studies demonstrate that a polyethylene chain has an extremely high thermal conductivity and the reported thermal conductivity of ultra-drawn polyethylene nanofibers is as high as 104 W·m-1·K-1, about 300 times higher than that of bulk polyethylene. In order to cast off this dilemma, several simulation methods are used to detect the unusually high thermal conductivity of a polyethylene chain. Molecular dynamics (MD) simulation results are highly sensitive to the choice of empirical potential or simulation method. Even using the same potential (AIREBO potential), the obtained thermal conductivity of a polyethylene chain is different. By combining the Green-Kubo method with a modal decomposition approach, equilibrium molecular dynamics (EMD) indicates that the thermal conductivity is able to exceed 100 W·m-1·K-1 while the polyethylene chain is longer than 40 nm at room temperature. Compared with the simulation result obtained by equilibrium molecular dynamics, the simulation result provided by using the non-equilibrium molecular dynamics (NEMD) method is only 57 W m·m-1·K-1 for a 160-nm-long polyethylene chain at room temperature. We use the first-principles method to calculate the force constant tensor, and the characteristics of quantum thermal transport in a polyethylene chain can be revealed. In our algorithm, several shortcomings of molecular dynamics, i.e., different potential functions or simulation methods may lead to obviously different results for the same quantum thermal transport system, are overcome. Based on the density functional theory (DFT), the central insertion scheme (CIS) combined with nonequilibrium Green's function (NEGF) is used to evaluate the isotope effect on quantum thermal transport in a polyethylene chain, which includes 432 atoms in scattering region and has a length of 18.533 nm. It is found that the upper limit of thermal conductivity of a 100-nm-long pure 12C polyethylene chain reaches a high value of 314.1 W·m-1·K-1 at room temperature. Moreover, for the case of a pure polyethylene chain of 12C, with other conditions unchanged, the reduction of average thermal conductance caused by 14C impurity is more remarkable than that by 13C. The most outstanding isotope effect on quantum thermal transport can be detected in the polyethylene chain. When the doping concentration of 14C in 12C is 50% at room temperature, the average thermal conductance will be reduced by 51%. It is of great significance for studying the mechanism of isotope effect on thermal transport in polyethylene.
      通信作者: 蔡绍洪, caish@mail.gufe.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11264005)、贵州省科学技术基金(批准号:黔科合J字[2012]2292 号)、贵州省教育厅自然科学研究项目(批准号:黔教合KY字[2014]307,黔教科 2008057,2007036)资助的课题.
      Corresponding author: Cai Shao-Hong, caish@mail.gufe.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11264005), Foundation of Science and Technology of Guizhou Province, China (Grant No.J[2012]2292), and the Natural Science Foundation of the Education Department of Guizhou Province, China (Grant No.[2014]307, 2008057, 2007036).
    [1]

    Reecht G, Scheurer F, Speisser V, Dappe Y J, Mathevet F, Schull G 2014 Phys. Rev. Lett. 112 047403

    [2]

    Singh V, Bougher T L, Weathers A, Singh V, Bougher T, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R, Altman D H, Sandhage K H, Shi L, Henry A, Cola B A 2014 Nature Nanotech. 9 384

    [3]

    Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502

    [4]

    Shen S, Henry A, Tong J, Zheng R T, Chen G 2010 Nature Nanotech. 10 1038

    [5]

    Cao B Y, Dong R Y, Kong J, Chen H, Xu Y, Rong Q L, Cai A 2012 Acta Phys. Sin. 61 046501 (in Chinese) [曹炳阳, 董若宇, 孔杰, 陈恒, 徐雁, 容启亮, 蔡岸 2012 物理学报 61 046501]

    [6]

    Yamanaka A, Takao T 2011 ISRN Mater. Sci. 10 5402

    [7]

    Liao Q W, Liu Z C, Liu W, Deng C C, Yang N 2015 Sci. Rep. 5 16543

    [8]

    Stocker H 2004 Physics Manual (Beijing: Peking University Press) p700 (in Chinese) [斯托克 2004 物理手册 (北京: 北京大学出版社) 第700页]

    [9]

    Onn D G, Witek A, Qiu Y Z, Anthony T R, Banholzer W F 1992 Phys. Rev. Lett. 68 2806

    [10]

    Xu Y, Chen X B, Gu B L, Duan W H 2009 Appl. Phys. Lett. 95 233116

    [11]

    Xie Z X, Tang L M, Pan C N, Li K M, Chen K Q, Duan W H 2012 Appl. Phys. Lett. 100 073105

    [12]

    Xie Z X, Chen K Q, Duan W H 2011 Phys. Condens. Matter. 23 315302

    [13]

    Si C, Liu Z, Duan W H, Liu F 2013 Phys. Rev. Lett. 111 196802

    [14]

    Tan Z W, Wang J S, Chee K G 2011 Nano Lett. 11 214

    [15]

    Zhang H J, Lee G, Fonseca A F, Borders T L, Cho K 2010 J. Nanomater. 7 537657

    [16]

    Sevinçli H, Sevik C, Çaın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228

    [17]

    Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K, Cai W W, Balandin A A, Ruoff R S 2012 Nature Mater. 10 1038

    [18]

    Henry A, Chen G 2009 Phys. Rev. B 79 144305

    [19]

    Hu G J, Cao B Y, Li Y W 2014 Chin. Phys. Lett. 31 086501

    [20]

    Li X Q, Chen J, Yu C X, Zhang G 2013 Appl. Phys. Lett. 103 013111

    [21]

    Jiang J W, Zhao J H, Zhou K, Rabczuk T 2012 J. Appl. Phys. 111 124304

    [22]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 物理学报 64 186302]

    [23]

    Gao B, Jiang J, Liu K, Wu Z Y, Lu W, Luo Y 2007 J. Comput. Chem. 29 434

    [24]

    Jiang J, Liu K, Lu W, Luo Y 2006 J. Chem. Phys. 124 214711

    [25]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [26]

    Wang J S, Wang J, L J T 2008 Eur. Phys. J. B 62 381

    [27]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [28]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 物理学报 62 244401]

    [29]

    Jia X F, Du L, Tang D H, Wang T L, Chen W H 2012 Acta Phys. Sin. 61 127202 (in Chinese) [贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪 2012 物理学报 61 127202]

    [30]

    Gu Y F, Wu X L, Wu H Z 2016 Acta Phys. Sin. 65 248104 (in Chinese) [顾云风, 吴晓莉, 吴宏章 2016 物理学报 65 248104]

    [31]

    Yamamoto T, Watanabe S, Watanabe K 2004 Phys. Rev. Lett. 92 075502

    [32]

    Mingo N, Yang L 2003 Phys. Rev. B 68 245406

    [33]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 Revision A.02, Gaussian, Inc., Wallingford CT

    [34]

    Mingo N, Stewart D A, Broido D A, Srivastava D 2008 Phys. Rev. B 77 033418

    [35]

    Nikoliç B K, Saha K K, Markussen T, Thygesen K S 2012 J. Comput. Electron. 11 78

    [36]

    Hu W P, Jiang J, Nakashima H, Luo Y, Kashimura Y, Chen K Q, Shuai Z, Furukawa K, Lu W, Liu Y Q, Zhu D B, Torimitsu K 2006 Phys. Rev. Lett. 96 027801

    [37]

    Jiang J, Gao B, Han T T, Fu Y 2009 Appl. Phys. Lett. 94 092110

    [38]

    Jiang J, Sun L, Gao B, Wu Z Y, Lu W, Yang J L, Luo Y 2010 J. Appl. Phys. 108 094303

    [39]

    Datta S, Cahay M, McLennan M 1987 Phys. Rev. B 36 5655

    [40]

    Savic I, Mingo N, Stewart D A 2008 Phys. Rev. Lett. 101 165502

    [41]

    Stewart D A, Savic I, Mingo N 2009 Nano Lett. 9 81

    [42]

    Markussen T, Jauho A P, Brandbyge M 2009 Phys. Rev. B 79 035415

    [43]

    Markussen T, Rurali R, Jauho A P, Brandbyge M 2007 Phys. Rev. Lett. 99 076803

    [44]

    Calzolari A, Jayasekera T, Kim K W, Nardelli M B 2012 J. Phys. Condens. Matter 24 492204

    [45]

    Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503

    [46]

    Zavgorodnev Y V, Chvalun S N, Nikolaeva G Y, Sagitova E A, Pashinin P, Gordeyev S A, Prokhorov K A 2015 J. Phys. Conf. Ser. 594 012010

    [47]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911

    [48]

    Smith P, Chanzy H D, Rotzinger B P 1987 J. Mater. Sci. 22 523

    [49]

    Jiang J W, Lan J H, Wang J S, Li B W 2010 J. Appl. Phys. 107 054314

    [50]

    Yang N, Zhang G, Li B W 2008 Nano Lett. 8 276

  • [1]

    Reecht G, Scheurer F, Speisser V, Dappe Y J, Mathevet F, Schull G 2014 Phys. Rev. Lett. 112 047403

    [2]

    Singh V, Bougher T L, Weathers A, Singh V, Bougher T, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R, Altman D H, Sandhage K H, Shi L, Henry A, Cola B A 2014 Nature Nanotech. 9 384

    [3]

    Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502

    [4]

    Shen S, Henry A, Tong J, Zheng R T, Chen G 2010 Nature Nanotech. 10 1038

    [5]

    Cao B Y, Dong R Y, Kong J, Chen H, Xu Y, Rong Q L, Cai A 2012 Acta Phys. Sin. 61 046501 (in Chinese) [曹炳阳, 董若宇, 孔杰, 陈恒, 徐雁, 容启亮, 蔡岸 2012 物理学报 61 046501]

    [6]

    Yamanaka A, Takao T 2011 ISRN Mater. Sci. 10 5402

    [7]

    Liao Q W, Liu Z C, Liu W, Deng C C, Yang N 2015 Sci. Rep. 5 16543

    [8]

    Stocker H 2004 Physics Manual (Beijing: Peking University Press) p700 (in Chinese) [斯托克 2004 物理手册 (北京: 北京大学出版社) 第700页]

    [9]

    Onn D G, Witek A, Qiu Y Z, Anthony T R, Banholzer W F 1992 Phys. Rev. Lett. 68 2806

    [10]

    Xu Y, Chen X B, Gu B L, Duan W H 2009 Appl. Phys. Lett. 95 233116

    [11]

    Xie Z X, Tang L M, Pan C N, Li K M, Chen K Q, Duan W H 2012 Appl. Phys. Lett. 100 073105

    [12]

    Xie Z X, Chen K Q, Duan W H 2011 Phys. Condens. Matter. 23 315302

    [13]

    Si C, Liu Z, Duan W H, Liu F 2013 Phys. Rev. Lett. 111 196802

    [14]

    Tan Z W, Wang J S, Chee K G 2011 Nano Lett. 11 214

    [15]

    Zhang H J, Lee G, Fonseca A F, Borders T L, Cho K 2010 J. Nanomater. 7 537657

    [16]

    Sevinçli H, Sevik C, Çaın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228

    [17]

    Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K, Cai W W, Balandin A A, Ruoff R S 2012 Nature Mater. 10 1038

    [18]

    Henry A, Chen G 2009 Phys. Rev. B 79 144305

    [19]

    Hu G J, Cao B Y, Li Y W 2014 Chin. Phys. Lett. 31 086501

    [20]

    Li X Q, Chen J, Yu C X, Zhang G 2013 Appl. Phys. Lett. 103 013111

    [21]

    Jiang J W, Zhao J H, Zhou K, Rabczuk T 2012 J. Appl. Phys. 111 124304

    [22]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 物理学报 64 186302]

    [23]

    Gao B, Jiang J, Liu K, Wu Z Y, Lu W, Luo Y 2007 J. Comput. Chem. 29 434

    [24]

    Jiang J, Liu K, Lu W, Luo Y 2006 J. Chem. Phys. 124 214711

    [25]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [26]

    Wang J S, Wang J, L J T 2008 Eur. Phys. J. B 62 381

    [27]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [28]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 物理学报 62 244401]

    [29]

    Jia X F, Du L, Tang D H, Wang T L, Chen W H 2012 Acta Phys. Sin. 61 127202 (in Chinese) [贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪 2012 物理学报 61 127202]

    [30]

    Gu Y F, Wu X L, Wu H Z 2016 Acta Phys. Sin. 65 248104 (in Chinese) [顾云风, 吴晓莉, 吴宏章 2016 物理学报 65 248104]

    [31]

    Yamamoto T, Watanabe S, Watanabe K 2004 Phys. Rev. Lett. 92 075502

    [32]

    Mingo N, Yang L 2003 Phys. Rev. B 68 245406

    [33]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 Revision A.02, Gaussian, Inc., Wallingford CT

    [34]

    Mingo N, Stewart D A, Broido D A, Srivastava D 2008 Phys. Rev. B 77 033418

    [35]

    Nikoliç B K, Saha K K, Markussen T, Thygesen K S 2012 J. Comput. Electron. 11 78

    [36]

    Hu W P, Jiang J, Nakashima H, Luo Y, Kashimura Y, Chen K Q, Shuai Z, Furukawa K, Lu W, Liu Y Q, Zhu D B, Torimitsu K 2006 Phys. Rev. Lett. 96 027801

    [37]

    Jiang J, Gao B, Han T T, Fu Y 2009 Appl. Phys. Lett. 94 092110

    [38]

    Jiang J, Sun L, Gao B, Wu Z Y, Lu W, Yang J L, Luo Y 2010 J. Appl. Phys. 108 094303

    [39]

    Datta S, Cahay M, McLennan M 1987 Phys. Rev. B 36 5655

    [40]

    Savic I, Mingo N, Stewart D A 2008 Phys. Rev. Lett. 101 165502

    [41]

    Stewart D A, Savic I, Mingo N 2009 Nano Lett. 9 81

    [42]

    Markussen T, Jauho A P, Brandbyge M 2009 Phys. Rev. B 79 035415

    [43]

    Markussen T, Rurali R, Jauho A P, Brandbyge M 2007 Phys. Rev. Lett. 99 076803

    [44]

    Calzolari A, Jayasekera T, Kim K W, Nardelli M B 2012 J. Phys. Condens. Matter 24 492204

    [45]

    Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503

    [46]

    Zavgorodnev Y V, Chvalun S N, Nikolaeva G Y, Sagitova E A, Pashinin P, Gordeyev S A, Prokhorov K A 2015 J. Phys. Conf. Ser. 594 012010

    [47]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911

    [48]

    Smith P, Chanzy H D, Rotzinger B P 1987 J. Mater. Sci. 22 523

    [49]

    Jiang J W, Lan J H, Wang J S, Li B W 2010 J. Appl. Phys. 107 054314

    [50]

    Yang N, Zhang G, Li B W 2008 Nano Lett. 8 276

  • [1] 焦宝宝. 基于同位素链核电荷半径的新关系. 物理学报, 2022, 71(15): 152101. doi: 10.7498/aps.71.20212343
    [2] 刘璇, 高腾, 解士杰. 有机半导体中极化子运动的同位素效应. 物理学报, 2020, 69(24): 246701. doi: 10.7498/aps.69.20200789
    [3] 李文涛, 于文涛, 姚明海. 采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应. 物理学报, 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [4] 沈勇, 董家齐, 徐红兵. 托卡马克离子温度梯度湍流输运同位素定标修正中杂质的影响. 物理学报, 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [5] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江. 聚噻吩单链量子热输运的第一性原理研究. 物理学报, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [6] 邹达人, 金硕, 许珂, 吕广宏, 赵振华, 程龙, 袁悦. 钨中氢同位素热脱附实验的速率理论模拟研究. 物理学报, 2015, 64(7): 072801. doi: 10.7498/aps.64.072801
    [7] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响. 物理学报, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [8] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用. 物理学报, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [9] 任桂明, 郑圆圆, 王丁, 王林, 谌晓洪, 王玲, 马敏, 刘华兵. 氢化氧化铝的同位素效应研究. 物理学报, 2014, 63(23): 233104. doi: 10.7498/aps.63.233104
    [10] 段志欣, 邱明辉, 姚翠霞. 采用量子波包方法和准经典轨线方法研究S(3P)+HD反应. 物理学报, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [11] 王刚, 方向正, 郭建友. 相对论平均场理论对Pt同位素形状演化的研究. 物理学报, 2012, 61(10): 102101. doi: 10.7498/aps.61.102101
    [12] 夏文泽, 于永江, 杨传路. 同位素取代和碰撞能对N(4S)+H2反应立体动力学性质的影响. 物理学报, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [13] 叶伏秋, 李科敏, 彭小芳. 低温下多通道量子结构中的弹性声子输运和热导. 物理学报, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [14] 彭小芳, 王新军, 龚志强, 陈丽群. 量子点调制的一维量子波导中声学声子输运和热导. 物理学报, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [15] 陈兴鹏, 王楠. 相对论平均场理论对Rn同位素链原子核基态性质的研究. 物理学报, 2011, 60(11): 112101. doi: 10.7498/aps.60.112101
    [16] 许燕, 赵娟, 王军, 刘芳, 孟庆田. 碰撞能和同位素取代对H+BrF→HBr+F反应立体动力学影响的理论研究. 物理学报, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [17] 余春日, 汪荣凯, 张杰, 杨向东. He同位素原子与HBr分子碰撞的微分截面. 物理学报, 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [18] 圣宗强, 郭建友. 相对论平均场理论对Se,Kr,Sr和Zr同位素链形状共存的系统研究. 物理学报, 2008, 57(3): 1557-1563. doi: 10.7498/aps.57.1557
    [19] 罗文浪, 阮 文, 张 莉, 谢安东, 朱正和. 氢同位素氚水T2O(X1A1)的解析势能函数. 物理学报, 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [20] 汪荣凯, 沈光先, 宋晓书, 令狐荣锋, 杨向东. He同位素对He-NO碰撞体系微分截面的影响. 物理学报, 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
计量
  • 文章访问数:  2745
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-20
  • 修回日期:  2017-03-27
  • 刊出日期:  2017-06-05

聚乙烯单链量子热输运的同位素效应

  • 1. 贵州大学大数据与信息工程学院, 贵阳 550025;
  • 2. 贵州师范学院物理与电子科学学院, 应用物理研究所, 贵阳 550018;
  • 3. 贵州财经大学贵州省经济系统仿真重点实验室, 贵阳 550025;
  • 4. 贵州师范学院贵州省纳米材料模拟与计算重点实验室, 贵阳 550018
  • 通信作者: 蔡绍洪, caish@mail.gufe.edu.cn
    基金项目: 国家自然科学基金(批准号:11264005)、贵州省科学技术基金(批准号:黔科合J字[2012]2292 号)、贵州省教育厅自然科学研究项目(批准号:黔教合KY字[2014]307,黔教科 2008057,2007036)资助的课题.

摘要: 高分子导热材料的有效调控受到了日益广泛的关注.应用密度泛函理论(DFT)、中央插入延展(central insertion scheme,CIS)方法及非平衡格林函数(NEGF)理论,对包含432个原子、长18.533 nm的聚乙烯单链量子热输运的同位素效应进行了研究.计算结果表明,室温下长100 nm的纯12C聚乙烯单链的热导率理论上限高达314.1 W·m-1·K-1;对于12C聚乙烯单链,其他条件一定时,14C掺杂引起的热导同位素效应比13C更为显著;室温下纯12C聚乙烯单链中14C掺杂原子百i分数为50%时同位素效应最显著,此时平均热导比未掺杂时下降了51%.这对探索聚乙烯材料热输运的同位素影响机理具有十分积极的意义.

English Abstract

参考文献 (50)

目录

    /

    返回文章
    返回