- 
				The phase-preserving amplitude regeneration scheme based on the bidirectional orthogonal-pumped semiconductor optical amplifier (SOA) is proposed in this work. Experimental investigation into the multiple four-wave mixing (FWM) process from the pump, the signal and their corresponding reflective fields is carried out in detail. The regeneration performance obtained from the product between co-propagating fields is also discussed, including its dependence on the signal launch power and the signal quality, to quantify the amplitude regeneration and the phase preserving behaviors. The amplitude distortion is suppressed by 2.2 dB experimentally, confirming the regeneration capability of the proposed scheme. Moreover, the regeneration performance is further investigated for multiple phase shift keying (MPSK) signals through the simulation. According to the numerical results, the operational parameters of the regenerator are the same for advanced modulation formats, proving the robust operation of the proposed bidirectional orthogonal-pumped SOA configuration.- 
													Keywords:
													
- optical phase conjugation /
- semiconductor optical amplifier /
- four-wave mixing /
- all-optical regeneration
 [1] Phillips I D, Tan M, Stephens M F C, McCarthy M E, Giacoumidis E, Sygletos S, Rosa P, Fabbri S, Le S T, Kanesan T, Turitsyn S K, Doran N J, Harper P, Ellis A D 2014Proceedings of the Optical Fiber Communication (OFC) Conference San Francisco, CA, USA, 9–13 March, 2014 pM3C.1 [2] Al-Khateeb M, Tan M, Zhang T, and Ellis A D 2019 IEEE Photonics Technol. Lett. 31 877  Google Scholar Google Scholar[3] Modiano E, Lin P J 2001 IEEE Commun. Mag. 39 124  Google Scholar Google Scholar[4] Rochette M, Fu, L, Ta'eed V, Moss D J, Eggleton B J 2006 IEEE J. Sel. Top. Quantum Electron. 12 736  Google Scholar Google Scholar[5] 陈新, 霍力, 娄采云, 王强, 余文科, 姜向宇, 赵之玺, 章恩耀 2016 物理学报 65 054208  Google Scholar Google ScholarChen X, Huo L, Lou C Y, Wang Q, Yu We K, Jiang X Y, Zhao Z X, Zhang E Y 2016 Acta Phys. Sin. 65 054208  Google Scholar Google Scholar[6] Wen F, Wu B J, Zhou X Y, Yuan H, Qiu K. 2014 Opt. Fiber Technol. 20 274  Google Scholar Google Scholar[7] Slavík R, Parmigiani F, Kakande J, et al. 2010 Nat. Photonics 4 690  Google Scholar Google Scholar[8] Roethlingshoefer T, Richter T, Schubert C, Onishchukov G, Schmauss B, Leuchs G 2014 Opt. Express 22 27077  Google Scholar Google Scholar[9] Wen F, Wu B J, Qiu K, Sygletos S 2019 Opt. Express 27 19940  Google Scholar Google Scholar[10] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆 2020 物理学报 69 074202  Google Scholar Google ScholarWang Y H, Wu B J, Guo B, Wen F, Qiu K 2020 Acta Phys. Sin. 69 074202  Google Scholar Google Scholar[11] Connelly M J, Krzczanowicz L, Morel P, Sharaiha A, Lelarge F, Brenot R, Joshi S, Barbet S 2016 Front. Optoelectron. 9 341  Google Scholar Google Scholar[12] Shao L, Sun F, Wen F, Yang Y, Yang F, Wu B J, Ling Y, Qiu K 2021 Proceedings of the Signal Processing in Photonic Communications Washington, DC United States, 26–29 July, 2021 pSpF2E.4 [13] Sobhanan A, Venkitesh D 2018 Opt. Express 26 22761  Google Scholar Google Scholar[14] Sun F, Wen F, Wu B, Ling Y, Qiu K 2022 Photonics 9 164  Google Scholar Google Scholar[15] Deng L, Hagley E W, Wen J, Trippenbach M, Band Y, Julienne P S, Simsarian J E, Helmerson K, Rolston S L, Phillips W D 1999 Nature 398 218  Google Scholar Google Scholar[16] McKinstrie C J, Harvey J D, Radic S, Raymer M G 2005 Opt. Express 13 9131  Google Scholar Google Scholar[17] Li Q, Davanço M, Srinivasan K 2016 Nat. Photonics 10 406  Google Scholar Google Scholar[18] Li K, Sun H, Foster A C 2017 Opt. Lett. 42 1488  Google Scholar Google Scholar[19] Lacava C, Ettabib M A, Bucio T D, Sharp G, Khokhar A Z, Jung Y, Sorel M, Gardes F, Richardson D J, Petropoulos P, Parmigiani F 2019 J. Lightwave Technol 37 1680  Google Scholar Google Scholar[20] Kyo I, Takaaki M, Tadashi S 1987 Appl. Phys. Lett. 51 1051  Google Scholar Google Scholar[21] Govind P A 1988 J. Opt. Soc. Am. B-Opt. Phys. 5 147  Google Scholar Google Scholar[22] Basil W H, Thomas L P 1973 J. Appl. Phys. 44 4113  Google Scholar Google Scholar
- 
				
    
    
图 3 不同驱动电流下(a)输入和(b)输出端口处的放大自发辐射光谱; (c) 驱动电流为100 mA时, 计算获得的反射率分布效果; (d)不同驱动电流下获得的工作波长范围1547.5—1549.5 nm内SOA反射率结果 Fig. 3. Power spectral density (PSD) of amplified spontaneous emission (ASE) spectrum under different driving currents at (a) input port and (b) output port; (c) the reflectivity at driving current 100 mA; (d) reflectivity between 1547.5 nm and 1549.5 nm obtained under different driving currents. 图 4 四种 FWM 情况下的光谱 HF注入下的(a)实验光谱图及(b) H偏振与(c) V偏振的仿真光谱图; VB 注入下的(d)实验光谱图及(e) H偏振与(f) V偏振的仿真光谱图; VF 注入下的(g)实验光谱图及(h) H偏振与(i) V偏振的仿真光谱图; HB注入下的 (j)实验光谱图及(k) H偏振与(l) V偏振的仿真光谱图 Fig. 4. Optical spectral results from the four FWM cases: (a) Experimental data and simulation results of (b) H and (c) V polarization for HF case; (d) experimental data and simulation results of (e) H and (f) V polarization for VB case; (g) experimental data and simulation results of (h) H and (i) V polarization for VF case; (j)experimental data and simulation results of (k) H and (l) V polarization for HB case. 图 6 (a)信号质量改善与输入信号OSNR的依赖关系; (b)最佳再生点处输入信号星座图(OSNRin=11.26 dB); (c)最佳再生点处共轭信号星座图 Fig. 6. (a) The relationship between the signal-quality improvement and the OSNR of input signals; constellation diagrams of (b) the input signal and (c) the regenerated conjugated signal for the case of the input OSNR=11.26 dB. 表 1 不同偏振正交泵浦结构对应的四波混频相位失配分析 Table 1. Analysis of phase mismatch of four-wave mixing corresponding to different polarization orthogonal pump structures 两组实验 
 结构实验 
 设置形成折射率光栅 
 的光场工作泵浦 
 光场光栅波矢 共轭光波矢 相位失配 共轭光偏 
 振态端口信息 ${k_\Omega }/({\text{rad} } \cdot { {\text{m} }^{ {{ - 1} } } })$ ${k_{\text{c} } }/(\rm rad \cdot {m^{ - 1} })$ $\Delta k/{\text{(rad} } \cdot { {\text{m} }^{ {{ - 1} } } }{\text{)} }$ 一组 HF $ P_{\text{H}}^{\text{f}}{, }S_{\text{H}}^{\text{f}} $ $ P_{\text{H}}^{\text{f}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z > 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 H 输出端 $ P_{\text{H}}^{\text{f}} $, $ S_{\text{H}}^{\text{f}} $ $ P_{\text{V}}^{{\text{bf}}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z > 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 V 输出端 VB $ P_{\text{H}}^{{\text{fb}}} $, $ S_{\text{H}}^{{\text{fb}}} $ $ P_{\text{V}}^{\text{b}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z < 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 V 输入端 $ P_{\text{H}}^{{\text{fb}}} $, $ S_{\text{H}}^{{\text{fb}}} $ $ P_{\text{H}}^{{\text{fb}}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z < 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 H 输入端 二组 VF $ P_{\text{V}}^{\text{f}}{, }S_{\text{V}}^{\text{f}} $ $ P_{\text{V}}^{\text{f}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z > 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 V 输出端 $ P_{\text{V}}^{\text{f}}{, }S_{\text{V}}^{\text{f}} $ $ P_{\text{H}}^{{\text{bf}}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z > 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 H 输出端 HB $ P_{\text{V}}^{{\text{fb}}}{, }S_{\text{V}}^{{\text{fb}}} $ $ P_{\text{H}}^{\text{b}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z < 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 H 输入端 $ P_{\text{V}}^{{\text{fb}}}{, }S_{\text{V}}^{{\text{fb}}} $ $ P_{\text{V}}^{{\text{fb}}} $ $ {k}_{\text{p}}-{k}_{\text{s}}(z < 0) $ $ 2{k_{\text{p}}} - {k_{\text{s}}} $ 0 V 输入端 
- 
				
[1] Phillips I D, Tan M, Stephens M F C, McCarthy M E, Giacoumidis E, Sygletos S, Rosa P, Fabbri S, Le S T, Kanesan T, Turitsyn S K, Doran N J, Harper P, Ellis A D 2014Proceedings of the Optical Fiber Communication (OFC) Conference San Francisco, CA, USA, 9–13 March, 2014 pM3C.1 [2] Al-Khateeb M, Tan M, Zhang T, and Ellis A D 2019 IEEE Photonics Technol. Lett. 31 877  Google Scholar Google Scholar[3] Modiano E, Lin P J 2001 IEEE Commun. Mag. 39 124  Google Scholar Google Scholar[4] Rochette M, Fu, L, Ta'eed V, Moss D J, Eggleton B J 2006 IEEE J. Sel. Top. Quantum Electron. 12 736  Google Scholar Google Scholar[5] 陈新, 霍力, 娄采云, 王强, 余文科, 姜向宇, 赵之玺, 章恩耀 2016 物理学报 65 054208  Google Scholar Google ScholarChen X, Huo L, Lou C Y, Wang Q, Yu We K, Jiang X Y, Zhao Z X, Zhang E Y 2016 Acta Phys. Sin. 65 054208  Google Scholar Google Scholar[6] Wen F, Wu B J, Zhou X Y, Yuan H, Qiu K. 2014 Opt. Fiber Technol. 20 274  Google Scholar Google Scholar[7] Slavík R, Parmigiani F, Kakande J, et al. 2010 Nat. Photonics 4 690  Google Scholar Google Scholar[8] Roethlingshoefer T, Richter T, Schubert C, Onishchukov G, Schmauss B, Leuchs G 2014 Opt. Express 22 27077  Google Scholar Google Scholar[9] Wen F, Wu B J, Qiu K, Sygletos S 2019 Opt. Express 27 19940  Google Scholar Google Scholar[10] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆 2020 物理学报 69 074202  Google Scholar Google ScholarWang Y H, Wu B J, Guo B, Wen F, Qiu K 2020 Acta Phys. Sin. 69 074202  Google Scholar Google Scholar[11] Connelly M J, Krzczanowicz L, Morel P, Sharaiha A, Lelarge F, Brenot R, Joshi S, Barbet S 2016 Front. Optoelectron. 9 341  Google Scholar Google Scholar[12] Shao L, Sun F, Wen F, Yang Y, Yang F, Wu B J, Ling Y, Qiu K 2021 Proceedings of the Signal Processing in Photonic Communications Washington, DC United States, 26–29 July, 2021 pSpF2E.4 [13] Sobhanan A, Venkitesh D 2018 Opt. Express 26 22761  Google Scholar Google Scholar[14] Sun F, Wen F, Wu B, Ling Y, Qiu K 2022 Photonics 9 164  Google Scholar Google Scholar[15] Deng L, Hagley E W, Wen J, Trippenbach M, Band Y, Julienne P S, Simsarian J E, Helmerson K, Rolston S L, Phillips W D 1999 Nature 398 218  Google Scholar Google Scholar[16] McKinstrie C J, Harvey J D, Radic S, Raymer M G 2005 Opt. Express 13 9131  Google Scholar Google Scholar[17] Li Q, Davanço M, Srinivasan K 2016 Nat. Photonics 10 406  Google Scholar Google Scholar[18] Li K, Sun H, Foster A C 2017 Opt. Lett. 42 1488  Google Scholar Google Scholar[19] Lacava C, Ettabib M A, Bucio T D, Sharp G, Khokhar A Z, Jung Y, Sorel M, Gardes F, Richardson D J, Petropoulos P, Parmigiani F 2019 J. Lightwave Technol 37 1680  Google Scholar Google Scholar[20] Kyo I, Takaaki M, Tadashi S 1987 Appl. Phys. Lett. 51 1051  Google Scholar Google Scholar[21] Govind P A 1988 J. Opt. Soc. Am. B-Opt. Phys. 5 147  Google Scholar Google Scholar[22] Basil W H, Thomas L P 1973 J. Appl. Phys. 44 4113  Google Scholar Google Scholar
计量
- 文章访问数: 6229
- PDF下载量: 75
- 被引次数: 0


 
					 
		         
	         
  
					 
										





 
							 下载:
下载: 
				 
							 
							 
							 
							 
							 
							 
							